scholarly journals Laser-Assisted High Speed Machining of 316 Stainless Steel: The Effect of Water-Soluble Sago Starch Based Cutting Fluid on Surface Roughness and Tool Wear

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1311
Author(s):  
Farhana Yasmin ◽  
Khairul Fikri Tamrin ◽  
Nadeem Ahmed Sheikh ◽  
Pierre Barroy ◽  
Abdullah Yassin ◽  
...  

Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material’s surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool’s flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.

Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


Author(s):  
Temitayo Samson Ogedengbe ◽  
Peter Awe ◽  
Ojotu Ijiwo Joseph

In this study, the performance of groundnut oil as an alternate cutting fluid was compared with that of soluble oil during machining of stainless steel. The temperature at the cutting zone, surface roughness and the chip formation were monitored under the two cutting conditions (soluble oil and vegetable oil). The machining parameters used were cutting speed (75 – 135 rev/min), feed rate (0.01 – 0.05 mm3/mm) and depth of cut (0.01 – 0.08 mm). The experiment was designed using Taguchi orthogonal array of Minitab 18 which generated a 9 run machining parameter mix for the experimentation. The Physiochemical properties of the various fluids were also analyzed to determine the properties and constituent elements of the cutting fluids. The actual machining of the stainless steel bar was done using a Colchester mastiff lathe machine. Results show that feed rate and cutting speed had the most significant effect on surface roughness during machining of stainless steel both with groundnut oil and soluble oil. Soluble oil was a better coolant but poorer in lubrication as vegetable oil reduced surface roughness more when used. Surface roughness value improved from 9.21μm during machining with soluble oil to 3.84μm during machining with groundnut oil which represented a 58.3% improvement. Hence, vegetable oil is therefore recommended as good alternative cutting fluid to soluble oil during machining of stainless steel.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


2015 ◽  
Vol 1101 ◽  
pp. 393-396
Author(s):  
Mohammad Ahsan Habib ◽  
Md. Anayet U. Patwari ◽  
Koushik Alam Khan ◽  
A.N.M. Amanullah Tomal

For cost reduction and quality improvement of machining products, optimum output machining parameters such as material removal rate, tool wear ratio and surface roughness is very essential. Moreover, these output parameters are strongly depends on the precision of the machine tool as well as the input machining parameters. In this paper, a hybrid model of Artificial Bee Colony (ABC), which is motivated by the intelligent behavior of honey bees with Response Surface Methodology (RSM), has been developed for optimizing the surface roughness of stainless steel during turning operation. The predicted optimal value of surface roughness of stainless steel is further confirmed by conducting supplementary experiments. Finally, the performance of this algorithm is evaluated in comparison with desirability analysis. The performance of ABC is at par with that of desirability analysis for different parametric conditions.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Author(s):  
Manabu Iwai ◽  
Ryouta Yamashita ◽  
Satoshi Anzai ◽  
Shinichi Ninomiya

Abstract The authors have proposed a micro bubble coolant in which micro bubbles (20∼50μm in diameter) are included in water soluble coolant. In the previous study, it was confirmed that the tool life was improved by applying the micro bubble coolant to various machining operations such as drilling, turning and grinding. Also, purification effects of the micro bubble coolant were found. In this study, micro bubble coolant in which inert gases (N2 and CO2) were mixed was proposed to be applied to grinding processes for further improvement in grinding performances. When nitrogen gas (2L/min) was mixed with the micro bubble in the water soluble coolant (70L), amount of the dissolved oxygen in coolant decreased to 0.5mg/L. And concentration of the carbon dioxide gas in the coolant increased to 100mg/L when carbon dioxide gas (2L/min) was mixed in. From the result of grinding test on high speed steel, it was found that grinding performances improved when the micro bubble coolant with any of air, N2 and CO2 gases was used. The grinding force decreased by a factor of about 15% and the tool life increased by 20∼30%. When nitrogen gas was mixed in, the surface roughness improved by about 15%. In grinding stainless steels, performances such as grinding force, tool life and surface roughness improved by 10% when nitrogen gas was mixed in. In addition, a tendency of flank wear reduction and improvement in the surface roughness were observed when air micro bubble was mixed into the coolant in the turning of high carbon steel and Inconel 718 as well. When N2 micro bubble was generated in the coolant, a flank wear was reduced by 20% and surface roughness was improved by 30 to 40%. These effects were higher than the coolant with air micro bubble.


Sign in / Sign up

Export Citation Format

Share Document