scholarly journals Design and Fabrication of Highly Porous Replicated Aluminum Foam Using Double-Granular Space Holder

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1619
Author(s):  
Arkady Finkelstein ◽  
Dmitry Husnullin ◽  
Konstantin Borodianskiy

Porous materials are widely employed in a wide variety of industrial applications due to their advanced functional performance. Porous aluminum is among the most attractive metallic materials. It can be produced using repeatable methods involving a replicated Al foam that also provides porosity control. In this work, a highly porous replicated Al foam was fabricated. First, the model of multifunctional packing density was used and corrected to select the appropriate space holders. Then, Al foam was produced using a double-granular sodium chloride space holder. The obtained results showed a maximum porosity of 65% that was achieved using a mix of coarse, irregular granules with spherical granules of intermediate size.

2012 ◽  
Vol 78 ◽  
pp. 31-39 ◽  
Author(s):  
Ausonio Tuissi ◽  
Paola Bassani ◽  
Carlo Alberto Biffi

Foams and other highly porous metallic materials with cellular structures are known to have many interesting combinations of physical and mechanical properties. That makes these systems very attractive for both structural and functional applications. Cellular metals can be produced by several methods including liquid infiltration of leachable space holders. In this contribution, results on metal foams of Cu based shape memory alloys (SMAs) processed by molten metal infiltration of SiO2 particles are presented. By using this route, highly homogeneous CuZnAl SMA foams with a spherical open-cell morphologies have been manufactured and tested. Morphological, thermo-mechanical and cycling results are reported.


2019 ◽  
Vol 484 (4) ◽  
pp. 436-440
Author(s):  
A. G. Gnedovets ◽  
V. A. Zelenskii ◽  
A. B. Ankudinov ◽  
M. I. Alymov

This paper reports on the creation of a highly porous material with a hierarchical structure using powder metallurgy methods based on nickel nanopowder and ammonium bicarbonate NH4HCO3 as a space holder.


Author(s):  
Gourav K Sharma ◽  
Piyush Pant ◽  
Prashant K Jain ◽  
Pavan K Kankar ◽  
Puneet Tandon

Induction heating is a non-contact-based energy source that has the potential to quickly melt the metal and become the alternate energy source that can be used for additive manufacturing. At present, induction heating is widely used in various industrial applications such as melting, preheating, heat treatment, welding, and brazing. The potential of this source has not been explored in the additive manufacturing domain. However, the use of induction heating in additive manufacturing could lead to low-cost part fabrication as compared to other energy sources such as laser or electron beam. Therefore, this study explores the feasibility of this energy source in additive manufacturing for fabricating parts of metallic materials. An experimental system has been developed by modifying an existing delta three-dimensional printer. An induction heater coil has been incorporated to extruder head for semi-solid processing of the metal alloy. In order to test the viability of the developed system, aluminium material in the filament form has been processed. Obtained results have shown that the induction heating–based energy source is capable of processing metallic materials having a melting point up to 1000° C. The continuous extrusion of the material has been achieved by controlling the extruder temperature using a proportional integral derivative–based controller and k-type thermocouple. The study also discusses various issues and challenges that occurred during the melting of metal with induction heating. The outcomes of this study may be a breakthrough in the area of metal-based additive manufacturing.


2015 ◽  
Vol 76 (6) ◽  
Author(s):  
N. H. Mohamad Nor ◽  
J.B Saedon ◽  
N. A. A. Kasim ◽  
M. H. Ismail ◽  
Hazran Husain

Most Ti-6Al-4V implant used today are often much stiffer than human bone. However, the young modulus of those Ti-6Al-4V implants can be reduced through the formation of porous structure. Palm stearin binder system with an addition of sodium chloride as space holder has been established in the fabrication of porous Ti-6Al-4V. Thus, this paper focuses on the compressive mechanical properties of porous Ti-6Al-4V with utilization of palm stearin binder system along with sodium chloride (NaCl) as the space holder. The evaluated compositions consist of the powder volume fraction of 63vol% and 65vol%. The samples were compacted by thermal compacting machine at temperature of 160oC. Two different debinding processes involved, which are heptane solvent and water leaching. Then the samples were sintered up to three different temperatures, which are 1200oC, 1250oC and 1300oC. Mechanical properties of the porous Ti-6Al-4V were characterized by axial compression testing. The maximum compressive stress and Young’s modulus of the samples were determined to be 403.87MPa and 9.92GPa.


2015 ◽  
Vol 647 ◽  
pp. 59-65
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Jaroslav Čapek ◽  
Iva Pospíšilová

Metallic biomaterials are currently used in medicine for fabrication of various kinds of implants like joint and bone replacements, dental implants, stents, fixation devices for fractured bones etc. Their advantages over polymeric or ceramic biomaterials are in higher strength, fracture toughness and fatigue life. In addition, metals can be simply processed by established technologies known for centuries. Due to the increasing average age of human population, there are growing requirements for mechanical and functional performance of implants. Therefore, extensive research and development activities are focused on new directions in this area including new surface treatments and alloys with improved biocompatibility and mechanical performance, porous biomaterials, biodegradable metallic materials. Biodegradable materials are explored as alternatives for fabrication of temporary medical implants like stents and fixation devices (screws, plates, nails) for fractured bones. The present paper focuses on new Mg-and Zn-biodegradable alloys. Advantages of these materials are characterized with respect to mechanical performance and corrosion behavior.


2007 ◽  
Vol 353-358 ◽  
pp. 651-654 ◽  
Author(s):  
M.F. Adziman ◽  
S. Deshpande ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

The stochastic nature of aluminum foam structure, having a random distribution of voids, makes it difficult to model its compressive deformation behavior accurately. In this paper, a 2-dimensional simplified modeling approach is introduced to analyze the compressive deformation behavior that occurs in Alporas aluminum foam (Al foam). This has been achieved using image analysis on real undeformed aluminum foam images obtained by VHX-100 digital microscope. Finite element mesh for the cross sectional model is generated with Object Oriented Finite element (OOF) method combined with ABAQUS structural analysis. It is expected that OOF modeling enable prediction of the origin of failure in terms of localized deformation with respect to the microstructural details. Furthermore, strain concentration sites leading to the evolution of the deformation band can be visualized. Thus, this investigation addresses the local inhomogeneity in the Al foam structure. This study implies that the OOF modeling approach combined with experimental observations can provide better insight into the understanding of aluminum foam compressive deformation behavior.


Sign in / Sign up

Export Citation Format

Share Document