scholarly journals On the Rate of Interaction of Sodium Borohydride with Platinum (IV) Chloride Complexes in Alkaline Media

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3137
Author(s):  
Magdalena Luty-Błocho ◽  
Marek Wojnicki ◽  
Edit Csapo ◽  
Krzysztof Fitzner

In this work, sodium borohydride was used as a strong reductant of traces of platinum complex ions. The investigations of the kinetics of redox reaction between platinum(IV) chloride complex ions and sodium borohydride were carried out. For the first time, the kinetic experiments were carried out in a basic medium (pH~13), which prevents NaBH4 from decomposition and suppresses the release of hydrogen to the environment. The rate constants of Pt(IV) reduction to Pt(II) ions under different temperatures and concentrations of chloride ions conditions were determined. In alkaline solution (pH~13), the values of enthalpy and entropy of activation are 29.6 kJ/mol and –131 J/mol K. It was also found that oxygen dissolved in the solution strongly affects kinetics of the reduction process. Using collected results, the reduction mechanism was suggested. For the first time, the appearance of diborane as an intermediate product during Pt(IV) ions reduction was suggested. Moreover, the influence of oxygen present in the reacting solution on the rate of reduction reaction was also shown.

2015 ◽  
Vol 1115 ◽  
pp. 386-389
Author(s):  
Haroon Haiza ◽  
I.I. Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Colloidal gold nanoparticles have been successfully prepared using a simple two-electrode cells connected to a DC power supply. During the electro-dissolution-reduction process, the bulk gold at the anode oxidized into gold cations which then reacted with the chloride ions to form aurochloride complex. The complex ions were then reduced by the citrate ion to form colloidal gold nanoparticles. The size and shape of the nanoparticles were modulated by varying the terminal voltages. The colloidal gold nanoparticles obtained were characterized by field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and ultraviolet-visible spectrophotometer (UV-Vis). From FESEM analysis, it was found that by increasing the voltage, the size of colloidal gold nanoparticles produced marginally decreased. The mean sizes of gold nanoparticles were roughly about 23.5 nm, 23.2 nm and 19.3 nm for 32 V, 36 V and 40 V, respectively. TEM micrograph showed that the shape of gold nanoparticles obtained is almost spherical. The characteristic peaks of UV-Vis spectra revealed that the suspension was indeed colloidal gold nanoparticles. Keywords: Gold, Nanoparticles, Electro-dissolution-reduction


2016 ◽  
Vol 840 ◽  
pp. 267-270
Author(s):  
Haroon Haiza ◽  
Iskandar Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Colloidal gold nanoparticles have been successfully synthesized using electro-dissolution-reduction process that consists of a simple two-electrode cells connected to a DC power supply. Throughout the process, bulk gold at the anode was oxidized into gold cations which then reacted with the chloride ions to form aurochloride complex. The complex ions were then reduced by the citrate ion to form colloidal gold nanoparticles. The size and shape of the nanoparticles were modulated by varying the citrate concentration. The colloidal gold nanoparticles obtained were characterized by field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and ultraviolet-visible spectrophotometer (UV-Vis). From FESEM analysis, it was found that by increasing the citrate concentration, the size of colloidal gold nanoparticles produced marginally increased. The mean sizes of gold nanoparticles were roughly about 18.7 nm, 19.3 nm, 20.5 nm and 21.3 nm for citrate concentrations of 0.05 M, 0.10 M, 0.15 M and 0.20 M, respectively. However, sample prepared without the addition of citrate, remained colorless indicating that aurochloride complex ions were not reduced to colloidal gold nanoparticles. TEM micrographs showed that the shape of gold nanoparticles obtained is almost spherical. The characteristic peaks of UV-Vis spectra revealed that the suspension was indeed colloidal gold nanoparticles.Keywords: Gold, Nanoparticles, Electro-dissolution-reduction


2018 ◽  
Author(s):  
Asel Sartbaeva ◽  
Paul R. Raithby ◽  
Remi Castaing ◽  
Antony Nearchou

Through a combination of thermogravimetry, mass spectrometry and differential thermal analysis, we demonstrate for the first time that all four zeolites show experimental differences in their host-guest interactions with 18C6. In addition, we have estimated the kinetics of 18C6 decomposition, which is a technique that has not been applied to zeolites previously. Using these findings as a toolkit, a more rational use of OSDAs can be utilised to prepare designer zeolites. Furthermore, the new methodologies presented herein can be applied to current zeolites, such as MFI-type zeolites used in the petrochemical industry.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


1994 ◽  
Vol 59 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Ladislav Svoboda ◽  
Petr Vořechovský

The properties of cellulose chelating ion exchangers Ostsorb have been studied in the sorption of cadmium and lead from aqueous solutions. The Cd(II) and Pb(II) ions are trapped by the Ostsorb OXIN and Ostsorb DETA ion exchangers most effectively in neutral and alkaline media but at these conditions formation of stable hydrolytic products of both metals competes with the exchange equilibria. From this point of view, Ostsorb DTTA appears to be a more suitable sorbent since it traps the Pb(II) and Cd(II) ions in acidic media already. Chloride ions interfere with the sorption of the two metals by Ostsorb DTTA whereas the ionic strength adjusted by the addition of sodium perchlorate does not affect the exchange capacity of this ion exchanger.


2019 ◽  
Vol 17 (1) ◽  
pp. 544-556
Author(s):  
Yoke-Leng Sim ◽  
Beljit Kaur

AbstractPhosphate ester hydrolysis is essential in signal transduction, energy storage and production, information storage and DNA repair. In this investigation, hydrolysis of adenosine monophosphate disodium salt (AMPNa2) was carried out in acidic, neutral and alkaline conditions of pH ranging between 0.30-12.71 at 60°C. The reaction was monitored spectrophotometrically. The rate ranged between (1.20 ± 0.10) × 10-7 s-1 to (4.44 ± 0.05) × 10-6 s-1 at [NaOH] from 0.0008 M to 1.00M recorded a second-order base-catalyzed rate constant, kOH as 4.32 × 10-6 M-1 s-1. In acidic conditions, the rate ranged between (1.32 ± 0.06) × 10-7 s-1 to (1.67 ± 0.10) × 10-6 s-1 at [HCl] from 0.01 M to 1.00 M. Second-order acid-catalyzed rate constant, kH obtained was 1.62 × 10-6 M-1 s-1. Rate of reaction for neutral region, k0 was obtained from graphical method to be 10-7 s-1. Mechanisms were proposed to involve P-O bond cleavage in basic medium while competition between P-O bond and N-glycosidic cleavage was observed in acidic medium. In conclusion, this study has provided comprehensive information on the kinetic parameters and mechanism of cleavage of AMPNa2 which mimicked natural AMP cleavage and the action of enzymes that facilitate its cleavage.


Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Olav Sundnes ◽  
William Ottestad ◽  
Camilla Schjalm ◽  
Peter Lundbäck ◽  
Lars la Cour Poulsen ◽  
...  

Abstract Background Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. Methods Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. Results We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2–1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. Conclusions We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Veniamin Zheleznov ◽  
Aleksey Golikov ◽  
Tatiana Sokolnitskaya ◽  
Sergey Ivannikov

Abstract The sorption kinetics of uranyl ions micro-quantities from fluoride solutions by nanostructured materials with anatase mesoporous structures has been studied. Using the model of competitive sorption of ions and positively charged complexes of uranyl ion on deprotonated hydroxyl groups of an anatase, kinetic curves of changes in the ratio of ionic forms of uranium in solution were calculated. Modeling was carried out under the assumption of a two-stage mechanism of uranium complex ions sorption. The modeling considered the influence of the uranyl ion carbonate complexes formation. The shift in equilibrium among ionic forms of uranyl correlates with the stability of the complexes in solution.


1976 ◽  
Vol 29 (2) ◽  
pp. 443 ◽  
Author(s):  
MA Haleem ◽  
MA Hakeem

Kinetic data are reported for the decarboxylation of β-resorcylic acid in resorcinol and catechol for the first time. The reaction is first order. The observation supports the view that the decomposition proceeds through an intermediate complex mechanism. The parameters of the absolute reaction rate equation are calculated.


Sign in / Sign up

Export Citation Format

Share Document