scholarly journals Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3773
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Cutting tool wear reduces the quality of the product in production processes. The optimization of both the machining parameters and tool life reliability is an increasing research trend to save manufacturing resources. In the present work, we introduced a computational approach in estimating the tool wear in the turning process using artificial intelligence. Support vector machines (SVM) for regression with Bayesian optimization is used to determine the tool wear based on various machining parameters. A coated insert carbide tool 2025 was utilized in turning tests of 709M40 alloy steel. Experimental data were collected for three machining parameters like feed rate, depth of cut, and cutting speed, while the parameter of tool wear was calculated with a scanning electron microscope (SEM). The SVM model was trained on 162 experimental data points and the trained model was then used to estimate the experimental testing data points to determine the model performance. The proposed SVM model with Bayesian optimization achieved a superior accuracy in estimation of the tool wear with a mean absolute percentage error (MAPE) of 6.13% and root mean square error (RMSE) of 2.29%. The results suggest the feasibility of adopting artificial intelligence methods in estimating the machining parameters to reduce the time and costs of manufacturing processes and contribute toward greater sustainability.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3506 ◽  
Author(s):  
Salaheldin Elkatatny

Rate of penetration (ROP) is defined as the amount of removed rock per unit area per unit time. It is affected by several factors which are inseparable. Current established models for determining the ROP include the basic mathematical and physics equations, as well as the use of empirical correlations. Given the complexity of the drilling process, the use of artificial intelligence (AI) has been a game changer because most of the unknown parameters can now be accounted for entirely at the modeling process. The objective of this paper is to evaluate the ability of the optimized adaptive neuro-fuzzy inference system (ANFIS), functional neural networks (FN), random forests (RF), and support vector machine (SVM) models to predict the ROP in real time from the drilling parameters in the S-shape well profile, for the first time, based on the drilling parameters of weight on bit (WOB), drillstring rotation (DSR), torque (T), pumping rate (GPM), and standpipe pressure (SPP). Data from two wells were used for training and testing (Well A and Well B with 4012 and 1717 data points, respectively), and one well for validation (Well C) with 2500 data points. Well A and Well B data were combined in the training-testing phase and were randomly divided into a 70:30 ratio for training/testing. The results showed that the ANFIS, FN, and RF models could effectively predict the ROP from the drilling parameters in the S-shape well profile, while the accuracy of the SVM model was very low. The ANFIS, FN, and RF models predicted the ROP for the training data with average absolute percentage errors (AAPEs) of 9.50%, 13.44%, and 3.25%, respectively. For the testing data, the ANFIS, FN, and RF models predicted the ROP with AAPEs of 9.57%, 11.20%, and 8.37%, respectively. The ANFIS, FN, and RF models overperformed the available empirical correlations for ROP prediction. The ANFIS model estimated the ROP for the validation data with an AAPE of 9.06%, whereas the FN model predicted the ROP with an AAPE of 10.48%, and the RF model predicted the ROP with an AAPE of 10.43%. The SVM model predicted the ROP for the validation data with a very high AAPE of 30.05% and all empirical correlations predicted the ROP with AAPEs greater than 25%.


2019 ◽  
Vol 9 (4) ◽  
pp. 372-384
Author(s):  
Maryam Sadi ◽  
Hajar Fakharian ◽  
Hamid Ganji ◽  
Majid Kakavand

Abstract In this study, two artificial intelligence models based on an adaptive neuro-fuzzy inference system (ANFIS) and a support vector machine (SVM) technique have been successfully developed to predict the desalination efficiency of produced water through a hydrate-based desalination treatment process. A genetic algorithm as an evolutionary optimization method has been used to determine the optimal values of SVM model coefficients. To this end, compressed natural gas and CO2 hydrate formation experiments were carried out, and the desalination efficiency of produced water was measured and utilized for model training and validation. After model development, graphical and statistical analysis approaches have been applied to evaluate the performance of suggested models by a comparison of model predictions with measured experimental data. For the ANFIS model, the coefficient of determination (R2) and average absolute relative error (AARE) are 0.9927 and 0.58%, respectively. The values of AARE and R2 for the SVM model are obtained 0.35% and 0.9985, respectively. These statistical criteria confirm excellent accuracy and robustness of intelligent models in predicting the desalination efficiency of produced water through the hydrate-based desalination treatment process. Furthermore, the Leverage statistical technique has been carried out to define the outliers. The obtained results demonstrate that all experimental data are reliable and both ANFIS and SVM models are statistically valid.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Md Arifuzzaman ◽  
Muhammad Aniq Gul ◽  
Kaffayatullah Khan ◽  
S. M. Zakir Hossain

There are several environmental factors such as temperature differential, moisture, oxidation, etc. that affect the extended life of the modified asphalt influencing its desired adhesive properties. Knowledge of the properties of asphalt adhesives can help to provide a more resilient and durable asphalt surface. In this study, a hybrid of Bayesian optimization algorithm and support vector regression approach is recommended to predict the adhesion force of asphalt. The effects of three important variables viz., conditions (fresh, wet and aged), binder types (base, 4% SB, 5% SB, 4% SBS and 5% SBS), and Carbon Nano Tube doses (0.5%, 1.0% and 1.5%) on adhesive force are taken into consideration. Real-life experimental data (405 specimens) are considered for model development. Using atomic force microscopy, the adhesive strength of nanoscales of test specimens is determined according to functional groups on the asphalt. It is found that the model predictions overlap with the experimental data with a high R2 of 90.5% and relative deviation are scattered around zero line. Besides, the mean, median and standard deviations of experimental and the predicted values are very close. In addition, the mean absolute Error, root mean square error and fractional bias values were found to be low, indicating the high performance of the developed model.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 519
Author(s):  
Jie Cao ◽  
Shijie Zhu ◽  
Chao Li ◽  
Bing Han

To predict the natural gas hydrate formation conditions quickly and accurately, a novel hybrid genetic algorithm–support vector machine (GA-SVM) model was developed. The input variables of the model are the relative molecular weight of the natural gas (M) and the hydrate formation pressure (P). The output variable is the hydrate formation temperature (T). Among 10 gas samples, 457 of 688 data points were used for training to identify the optimal support vector machine (SVM) model structure. The remaining 231 data points were used to evaluate the generalisation capability of the best trained SVM model. Comparisons with nine other models and analysis of the outlier detection revealed that the GA-SVM model had the smallest average absolute relative deviation (0.04%). Additionally, the proposed GA-SVM model had the smallest amount of outlier data and the best stability in predicting the gas hydrate formation conditions in the gas relative molecular weight range of 15.64–28.97 g/mol and the natural gas pressure range of 367.65–33,948.90 kPa. The present study provides a new approach for accurately predicting the gas hydrate formation conditions.


2011 ◽  
Vol 141 ◽  
pp. 574-577
Author(s):  
Lu Zhang ◽  
Guo Feng Wang ◽  
Xu Da Qin ◽  
Xiao Liang Feng

Tool wear monitoring plays an important role in the automatic machining processes. Therefore, it is necessary to establish a reliable method to predict tool wear status. In this paper, features of acoustic emission (AE) extracted from time-frequency domain are integrated with force features to indicate the status of tool wear. Meanwhile, a support vector machine (SVM) model is employed to distinguish the tool wear status. The result of the classification of different tool wear status proved that features extracted from time-frequency domain can be the recognize-features of high recognition precision.


2012 ◽  
Vol 246-247 ◽  
pp. 1289-1293
Author(s):  
Zheng Qiang Li ◽  
Peng Nie ◽  
Shu Guo Zhao

Aiming at the nonlinear characteristics of the tool wear Acoustic Emission signal, tool wear state identification method is proposed based on local linear embedding and vector machine supported. The local linear embedding algorithm makes high dimensional information down to low dimension feature space through commutation, and thus to compress the data for highlighting signal features. This algorithm well compensates for the weakness of linear dimension reduction failing to find datasets nonlinear structure. In this paper, acoustic emission signal is firstly made by phase space reconstruction. Using local linear embedding method, the high dimension space mapping data points are reflected into low-dimensional space corresponding data points, then extracting tool wear state characteristics, and using vector machine supported classifier to identify classification of the tool wear conditions. Experimental results show that this method is used for the exact recognition of the tool wear state, and has widespread tendency.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-21
Author(s):  
Sebastian Schlag ◽  
Matthias Schmitt ◽  
Christian Schulz

The time complexity of support vector machines (SVMs) prohibits training on huge datasets with millions of data points. Recently, multilevel approaches to train SVMs have been developed to allow for time-efficient training on huge datasets. While regular SVMs perform the entire training in one—time-consuming—optimization step, multilevel SVMs first build a hierarchy of problems decreasing in size that resemble the original problem and then train an SVM model for each hierarchy level, benefiting from the solved models of previous levels. We present a faster multilevel support vector machine that uses a label propagation algorithm to construct the problem hierarchy. Extensive experiments indicate that our approach is up to orders of magnitude faster than the previous fastest algorithm while having comparable classification quality. For example, already one of our sequential solvers is on average a factor 15 faster than the parallel ThunderSVM algorithm, while having similar classification quality. 1


2021 ◽  
Author(s):  
Tianhang Pan ◽  
Jun Zhang ◽  
Xing Zhang ◽  
Wanhua Zhao ◽  
Huijie Zhang ◽  
...  

Abstract Tool wear is an important factor that affects the aeronautical structural parts' quality and machining accuracy in the milling process. It is essential to monitor the tool wear in titanium alloy machining. The traditional tool wear features such as root mean square (RMS), kurtosis, and wavelet packet energy spectrum are related to not only the tool wear status but also to the milling parameters, thus monitoring the tool wear status only under fixed milling parameters. This paper proposes a new method of online monitoring of tool wear using milling force coefficients. The instantaneous cutting force model is used to extract the milling force coefficients which are independent of milling parameters. The principal component analysis (PCA) algorithm is used to fuse the milling force coefficients. Furthermore, support vector machine (SVM) model is used to monitor tool wear states. Experiments with different machining parameters were conducted to verify the effectiveness of this method used for tool wear monitoring. The results show that compared to traditional features, the milling force coefficients are not dependent on the milling parameters, and using milling force coefficients can effectively monitor the transition point of cutters from normal wear to severe wear (tool failure).


Author(s):  
Shahab Shamshirband ◽  
Alireza Baghban ◽  
Jafar Sasanipour ◽  
Masoud Hadipoor

Various empirical models are available to evaluate the temperature effects on relative permeability of the different rock and fluid systems. However, the implementation of limited experimental data points may hinder the applicability of such models to other systems. This study aims to develop new predictive models for kro estimation based on multilayer perceptron artificial neural network (MLP-ANN), adaptive neuro-fuzzy inference system (ANFIS), and least squares support vector machine (LSSVM) approaches. A database comprising of 626 data points applied to the model development. The independent variables are temperature, oil viscosity, water viscosity, water saturation ( ), and the absolute permeability. Each variable covers a wide range of variations which increases models’ potential to be applied in various systems with different characteristics. The doubtful experimental data points excluded using a leverage value approach and a sensitivity analysis carried out to determine the quantitative impact of every individual independent variable on the kro. Statistical error analyses demonstrated the coefficient of determination (R2) values of 0.985, 0.975, and 0.999 for MLP-ANN, ANFIS, and LSSVM, respectively. The comparative study indicated that the LSSVM had the best performance regarding both graphical and statistical error analyses among the newly proposed models and previously reported models in the literature.


Sign in / Sign up

Export Citation Format

Share Document