scholarly journals Experimental Study on the Axial Tensile Properties of FRP Grid-Reinforced ECC Composites

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3936
Author(s):  
Langni Deng ◽  
Lizhen Lei ◽  
Shijin Lai ◽  
Ling Liao ◽  
Zheng Zhou

The axial tensile properties of FRP mesh-reinforced ECC composites (TRE) were investigated experimentally under the consideration of four influencing factors: grid type, number of reinforcement layers, ECC matrix thickness, and sticky sand treatment on the grid surface. The test results showed that the axial stiffness and tensile strength of the composite were significantly increased, and the tensile properties were significantly improved under the effect of FRP grid reinforcement. Increasing the thickness of the ECC matrix can obviously improve the crack resistance of composites. The ultimate tensile strength of FRP lattice-reinforced ECC composites increased significantly with the increase in the number of lattice layers, but had no significant effect on the crack resistance. The tensile properties of CFRP grid-reinforced ECC composites were slightly better compared to BFRP grid-reinforced ECC composites. The crack resistance and ultimate tensile strength of the composites were slightly improved by impregnating the surface of the FRP grid with adhesive-bonded sand treatment. Based on the experimental data, the tensile stress–strain constitutive model of FRP grid-reinforced ECC composites is established. The calculation results show that the theoretical values of the model agree well with the experimental values. Therefore, it can be used to reflect the stress–strain change state of FRP lattice-reinforced ECC composites during axial tension.

Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


Author(s):  
Asma Ul Hosna Meem ◽  
Kyle Rudolph ◽  
Allyson Cox ◽  
Austin Andwan ◽  
Timothy Osborn ◽  
...  

Abstract Digital light processing (DLP) is an emerging vatphotopolymerization-based 3D-printing technology where full layers of photosensitive resin are irradiated and cured with projected ultraviolet (UV) light to create a three-dimensional part layer-by-layer. Recent breakthroughs in polymer chemistry have led to a growing number of UV-curable elastomeric photoresins developed exclusively for vat photopolymerization additive manufacturing (AM). Coupled with the practical manufacturing advantages of DLP AM (e.g., industry-leading print speeds and sub-micron-level print resolution), these novel elastomeric photoresins are compelling candidates for emerging applications requiring extreme flexibility, stretchability, conformability, and mechanically-tunable stiffness (e.g., soft robotic actuators and stretchable electronics). To advance the role of DLP AM in these novel and promising technological spaces, a fundamental understanding of the impact of DLP manufacturing process parameters on mechanical properties is requisite. This paper highlights our recent efforts to explore the process-property relationship for ELAST-BLK 10, a new commercially-available UV-curable elastomer for DLP AM. A full factorial design of experiments is used to investigate the effect of build orientation and layer thickness on the quasi-static tensile properties (i.e., small-strain elastic modulus, ultimate tensile strength, and elongation at fracture) of ELAST-BLK 10. Statistical results, based on a general linear model via ANOVA methods, indicate that specimens with a flat build orientation exhibit the highest elastic modulus, ultimate tensile strength, and elongation at fracture, likely due to a larger surface area that enhances crosslink density during the curing process. Several popular hyperelastic constitutive models (e.g., Mooney-Rivlin, Yeoh, and Gent) are calibrated to our quasi-static tensile data to facilitate component-level predictive analyses (e.g., finite-element modeling) of soft robotic actuators and other emerging soft-matter applications.


2010 ◽  
Vol 129-131 ◽  
pp. 65-69 ◽  
Author(s):  
Kai Huai Yang ◽  
Wen Zhe Chen

Three groups of commercial 1060 Al alloy sheets were subjected to constrained groove pressing (CGP) at room temperature using parallel CGP, 180° cross CGP and 90° cross CGP, respectively. Tensile properties and fracture modes of as-annealed and CGPed samples were investigated. The ultimate tensile strength (UTS) of 1060 Al increases significantly after CGP, while the elongation decreases. But they are strongly dependence on the number of CGP passes and the pressing modes. The UTS and elongation of the samples processed by 90° cross CGP are best, consequently, the static toughness of the 90° cross CGPed samples is enhanced. Besides, all CGPed specimens failed in a ductile manner. With increasing the number of CGP pass, the amount of small dimples increases, and the dimples become shallow and more uniform.


2014 ◽  
Vol 660 ◽  
pp. 204-208
Author(s):  
Nik Mizamzul Mehat ◽  
Amirul Aliff Jamaludin ◽  
Shahrul Kamaruddin

The reprocessing ability of recycled polypropylene (PP) has been investigated to evaluate the recycling feasibility in spur gear production. Up to 15 reprocessing cycles have been performed by injection moulding, and the effects on tensile properties including ultimate tensile strength, Young’s modulus and elongation at break have been studied. Results revealed that reprocessing ability of recycled PP spur gears could yield satisfactory quality as attractive as that corresponding to the virgin PP spur gear. The recycled PP gears resulted in more 10% variation in tensile properties during multiple processing. This effort might be a contribution to convince the industry to apply recycling of PP by means of multiple reprocessing in gear manufacturing.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012078
Author(s):  
Muhammad Zuhair Mohd Rizal ◽  
Ahmad Hamdan

Abstract Recently, natural fibres composite is rigorously explored as alternative fibres due to the source depletion of petroleum. This research was focusing on pineapple leaf (PALF). The purpose of this research was to study the single fibre tensile properties of PALF. The single fibre tensile test was conducted via the universal testing machine following ASTM D3379 – 89 standards. The result shows that the Ultimate Tensile Strength (UTS) and Young’s Modulus of PALF were 141.093 MPa and 89.073 MPa, respectively. This research’s benefits include reducing agriculture waste of pineapple leaf, which is commonly being thrown out by the farmers when the fruits are harvested. It focuses not only on waste reduction but also on economic factors when other industries fully utilise the pineapple leaf.


2021 ◽  
Vol 22 (3) ◽  
pp. 543-550
Author(s):  
V.V. Usov ◽  
N.M. Shkatulyak ◽  
O.S. Savchuk ◽  
N.I. Rybak

This work aims to determine the Kearns texture parameters and evaluate on their basis the elastic moduli, mechanical properties (ultimate tensile strength, conditional yield stress), as well as damageability parameters of the sheets commercial titanium (CT-grade 1: 0.04% Fe; 0.015% C; 0.05% N 0.05% c; 0.009% H)  as delivered after rolling and annealing at 840°C (original sheet) and further alternating bending (AB) in the amount of 0.5; 1, 3 and 5 cycles. Damageability parameters characterizing damage accumulation were determined from the elastic modulus change after the above-mentioned number of AB cycles relative to the values ​​of the elastic modulus in different directions of the original sheet of the studied titanium. The elastic constants of the single crystal and the Kearns texture parameters were used to estimate the elastic modulus in the rolling direction (RD) and transverse direction (TD) of the original sheet, and sheets after an above number of AB cycles. The deviation of the calculated and experimental values ​​of the elastic modulus did not exceed 5%. The deviation of the calculated and experimental values of the ultimate tensile strength and yield stress in the RD and TD both in the initial state and after the corresponding number cycles of the AB did not exceed 10%.


2016 ◽  
Vol 859 ◽  
pp. 111-117
Author(s):  
Jun Xiang Zhou ◽  
Mohsen Masoumi ◽  
Henry Hu

In this study, the effect of calcium contents on tensile properties of squeeze cast Mg-Al-Ca alloys at room temperature was investigated. The results show that as the calcium content of AMC50X increases from 0 to 4 wt.%, the ultimate tensile strength (UTS) and elongation-to-failure (Ef) decrease dramatically at room temperature. But, the yield strengths (YS) of the alloys improve slightly.


2007 ◽  
Vol 546-549 ◽  
pp. 311-314 ◽  
Author(s):  
Da Quan Li ◽  
Qu Dong Wang ◽  
Wen Jiang Ding

Microstructure and tensile properties of AZ31 rolled at different temperatures were characterized. Rolling of extruded AZ31 plates was carried out at room temperature, 573K, 623K and 673K. Cold rolling of extruded AZ31 plates was difficult due to the poor formability at room temperature. And deformation twinning plays an important role in rolling of AZ31 alloy at room temperature. The microstructural analysis showed that the nucleation of dynamic recrystallization (DRX) occurred at 573K, DRX was almost completed at 623K and grain growth was determined at 673K. The ultimate tensile strength (UTS) as large as 377MPa was achieved after rolled at 573K. And the anisotropy in strength was obviously examined due to the rolling texture. The anisotropy reduced as rolling temperature increasing from 573K to 673K and this may be attributed to the completion of DRX.


Author(s):  
Bin Yang ◽  
Wen-Chun Jiang ◽  
Wen-Qi Sun ◽  
Yan-Ling Zhao ◽  
Wei-Ya Zhang

Metallographic tests, micro-hardness tests and tensile tests were conducted for a 1.25Cr-0.5Mo main steam pipe weldment served for more than 26 years. The results were compared with those for virgin material. Microstructural evolution of 1.25Cr-0.5Mo base metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates take place after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM > HAZ > BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM. Brittle failures can happen more easily for HAZ due to its high yield ratio.


Author(s):  
Karun Kalia ◽  
Amir Ameli

Fused deposition modeling (FDM) is highly commercialized Rapid Prototyping (RP) technology for its ability to build complex parts with low cost in a short period of time. The process parameters in the FDM play a vital role in the mechanical properties of the polymeric parts. Most of the research studies show that the variable parameters such as orientation, layer thickness, raster angle, raster width, and air gap are some of the key parameters that affect the mechanical properties of FDM-processed polymeric parts. However, no reports have been made regarding the influence of nozzle diameter with raster width on the tensile properties of FDM fabricated polymeric parts. This work was devoted to achieving improved and isotropic mechanical properties in polycarbonate (PC) and PC/carbon nanotube (PC/CNT) nanocomposites by investigating the effect of printing parameters in FDM process. The nozzle diameter to raster width ratio, α was found to significantly affect the mechanical properties. The printing direction dependency in tensile properties were studied with the ratio α < 1 and α≥ 1 at three different raster angles of 0°, 45°/−45° and 90°. For α < 1, Ultimate tensile strength and modulus of elasticity were higher for 0°, compared to 45°/−45° and 90° raster angles. However, for α ≥ 1, the ultimate tensile strength and the modulus of elasticity showed little dependency to print direction. This certainly determines the decrease in anisotropy at higher values of α. Mesostructure characterization with microscopy and image analysis were used to further explain the printing behavior and the resultant properties of the printed samples.


Sign in / Sign up

Export Citation Format

Share Document