Effect of Ca Contents on Tensile Properties of Squeeze Cast Mg-Al-Ca Alloys

2016 ◽  
Vol 859 ◽  
pp. 111-117
Author(s):  
Jun Xiang Zhou ◽  
Mohsen Masoumi ◽  
Henry Hu

In this study, the effect of calcium contents on tensile properties of squeeze cast Mg-Al-Ca alloys at room temperature was investigated. The results show that as the calcium content of AMC50X increases from 0 to 4 wt.%, the ultimate tensile strength (UTS) and elongation-to-failure (Ef) decrease dramatically at room temperature. But, the yield strengths (YS) of the alloys improve slightly.

2010 ◽  
Vol 129-131 ◽  
pp. 65-69 ◽  
Author(s):  
Kai Huai Yang ◽  
Wen Zhe Chen

Three groups of commercial 1060 Al alloy sheets were subjected to constrained groove pressing (CGP) at room temperature using parallel CGP, 180° cross CGP and 90° cross CGP, respectively. Tensile properties and fracture modes of as-annealed and CGPed samples were investigated. The ultimate tensile strength (UTS) of 1060 Al increases significantly after CGP, while the elongation decreases. But they are strongly dependence on the number of CGP passes and the pressing modes. The UTS and elongation of the samples processed by 90° cross CGP are best, consequently, the static toughness of the 90° cross CGPed samples is enhanced. Besides, all CGPed specimens failed in a ductile manner. With increasing the number of CGP pass, the amount of small dimples increases, and the dimples become shallow and more uniform.


2007 ◽  
Vol 546-549 ◽  
pp. 311-314 ◽  
Author(s):  
Da Quan Li ◽  
Qu Dong Wang ◽  
Wen Jiang Ding

Microstructure and tensile properties of AZ31 rolled at different temperatures were characterized. Rolling of extruded AZ31 plates was carried out at room temperature, 573K, 623K and 673K. Cold rolling of extruded AZ31 plates was difficult due to the poor formability at room temperature. And deformation twinning plays an important role in rolling of AZ31 alloy at room temperature. The microstructural analysis showed that the nucleation of dynamic recrystallization (DRX) occurred at 573K, DRX was almost completed at 623K and grain growth was determined at 673K. The ultimate tensile strength (UTS) as large as 377MPa was achieved after rolled at 573K. And the anisotropy in strength was obviously examined due to the rolling texture. The anisotropy reduced as rolling temperature increasing from 573K to 673K and this may be attributed to the completion of DRX.


2018 ◽  
Vol 192 ◽  
pp. 03014 ◽  
Author(s):  
Eakasit Sritham ◽  
Phakaimat Phunsombat ◽  
Jedsada Chaishome

The tensile properties of PLA/PBAT blends, PLA fibre reinforced PBAT composite (PLAF) at room temperature and -18°C were investigated. The concentrations of PLA in the blends were 10%, 20%, 30% and 40% (by volume). There was an improvement of elastic modulus (E) for PLA/PBAT blends when PLA was 40%. There was no significant difference of ultimate tensile strength (UTS) among the blends. For the same concentration of PLA (40%) in PLA-PBAT mixture, PLAF exhibited higher values of E and UTS than that of PLA/PBAT blends. Elongation of PLA/PBAT blends rapidly decreased upon the addition of PLA to the blends. The values of E and UTS for PLA/PBAT blends and composite, neat PLA, and PP increased with the decreasing of temperature from room temperature to -18°C. The effect of decreasing temperature was not observed on elongation. It was appeared from the results obtained for FTIR and DSC measurements that PLA and PBAT were immiscible, separating into two phases.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1648
Author(s):  
Guo-Jun Liu ◽  
Yan-Hua Sun ◽  
Nan Xia ◽  
Xiao-Fang Guan

The effects of small amounts of Ce-rich misch metal (Mm: 0.5, 1.0 and 2.0 wt.%) addition on the microstructure and tensile properties of as-cast Mg-7Al-3Sn-1Zn wt.% (ATZ731) alloy have been investigated. The addition of Mm restricts the formation of the Mg17Al12 phase but greatly promotes the Al4Mm phase. The proper Mm addition enhances the strength and ductility of ATZ731 alloys at both room temperature (RT) and 175 °C. ATZ731 alloys with 1.0 wt.% Mm addition exhibit an advantageous combination strength and ductility, with the ultimate tensile strength (UTS), 0.2% yield strength (YS) and elongation to failure (Ef) at 175 °C of ~148 MPa, ~102 MPa and ~28%, improved by ~14.7%, ~24.3% and ~53.8%, respectively, compared to those of ATZ731 alloy. This enhancement is primarily owing to the refined microstructures and the high thermal stability of Al4Mm at the elevated temperature in contrast with that of the Mg17Al12 phase. The fracture modes are also discussed.


2007 ◽  
Vol 546-549 ◽  
pp. 305-310
Author(s):  
Bao Yi Yu ◽  
Yu Ying Li ◽  
Hong Wu Song ◽  
Xiao Guang Yuan ◽  
Zhen Liu

Microstructures and tensile properties of Mg-8Zn-4Al-xCax=0.6wt.%, 1.0wt.%, 1.3wt.%, named as alloy 1#, 2# and 3# , respectively)extruded magnesium alloy tube were studied at room and elevated temperature. The results show that Ca can increase tensile strength of the alloy at 150 and 200°C significantly. At the temperature of 200°C, alloy 3# achieved optimal tensile properties, of which the ultimate tensile strength, the yield strength and the elongation were 165.8MPa, 108.7Mpa and 41.5% respectively. Compared with the properties of as cast ZAC8506 Magnesium alloy, it is shown that the tensile properties of alloy 3# are much higher than that of ZAC8506 at both room temperature and 150°C. Alloy 3# also gets better tensile performance than AZ91D extruded tube produced in the same way at the temperature of 200°C Mg2Al3 and Ca2Mg5Zn13 phases are found in the microstructure which should contribute to the higher performance of alloy 3# at elevated temperature


2009 ◽  
Vol 23 (06n07) ◽  
pp. 771-776 ◽  
Author(s):  
MOHSEN MASOUMI ◽  
QIANG ZHANG ◽  
HENRY HU

Microstructure and tensile properties of squeeze cast Mg - Al - Ca alloys with different levels of calcium addition (AMC50X) were studied. The microstructural analysis by optical and scanning electron microscopy (SEM) shows that the squzeeze cast Mg - Al - Ca alloys contain primary α- Mg , ( Al , Mg )2 Ca and Mn - Al intermetallic while the base alloy AM50 contains primary α- Mg , β- Mg 12 Al 17 and Mn - Al intermetallic. The addition of calcium varying from 1 to 4 wt.% increases the fraction area of Ca -containing secondary phases from 9.5% to 19.5%. The experimental observation confirms also that the calcium has a grain refining effect on the base alloy AM50A. The tensile testing results indicate that, as the calcium content of AMC50X alloys increases from 0 to 4%, the ultimate tensile strength (UTS) and elongation ( E f ) decrease dramatically at room temperature as their yield strengths (YS) improves slightly. At 150°C, however, both the UTS and YS of the alloys increase with increasing the Ca content.


2007 ◽  
Vol 351 ◽  
pp. 201-207 ◽  
Author(s):  
Jun Qiang Lu ◽  
Wei Jie Lu ◽  
Yang Liu ◽  
Ji Ning Qin ◽  
Di Zhang

In this paper, Ti-6Al-4V matrix composites reinforced with 5% or 10% TiB and TiC were in situ synthesized by common casting and hot-forging technology utilizing the reaction between titanium and B4C. The phase constituents were identified by XRD while transus temperatures were determined by DSC and metallography. The evolution of microstructures was studied by optical microscopy. The effects of reinforcements on the microstructures, tensile properties and fractures at room temperature were discussed. The results show that yield strength and ultimate tensile strength increased significantly while ductility decreased with reinforcements increasing. Fracture type turned to brittle when reinforcements increased.


Materials ◽  
2004 ◽  
Author(s):  
D. T. Read ◽  
Y.-W. Cheng ◽  
R. Geiss

The temperature dependence of the strength of a thin copper electrodeposit has been measured, by microtensile testing, from room temperature to 150 °C. The ultimate tensile strength decreased from around 240 MPa at room temperature to just above 200 MPa at 150 °C. The yield strength followed a similar trend. Elongation to failure increased slightly with temperature. The Young’s modulus, as measured by the unload-load slope, was well below the values expected based on averaging single-crystal elastic constants at all test temperatures. The effect of strain rate on strength at room temperature, using a range of over a decade, was low, with a weak trend upward.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document