scholarly journals Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4337
Author(s):  
Antonio Iacomini ◽  
Juan Antonio Tamayo-Ramos ◽  
Carlos Rumbo ◽  
Irem Urgen ◽  
Marzia Mureddu ◽  
...  

Due to the ever-increasing limitations of the use of lead-based materials, the manufacturing of lead-free piezoceramics with competitive piezoelectric properties and established nontoxicity is considered a priority for the scientific and industrial community. In this work, a lead-free system based on sodium potassium niobate (KNN), opportunely modified with MgNb2O6 (MN), was prepared through a combination of a mechanochemical activation method and air sintering, and its toxicity was evaluated. The effect of the mechanical processing on the microstructure refinement of the processed powders was established by X-ray diffraction and the average crystallite size content of the Nb2O5 species was evaluated. The experimental evidence was rationalized using a phenomenological model which permitted us to obtain the amount of powder processed at each collision and to optimize the activation step of the pre-calcined reagents. This influenced the final density and piezoresponse of the as-sintered pellets, which showed optimal properties compared with other KNN systems. Their toxicological potential was evaluated through exposure experiments to the pulverized KNN-based pellets, employing two widely used human and environmental cellular models. The in vitro assays proved, under the selected conditions, the absence of cytotoxicity of KNN-bases systems here studied.

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 494 ◽  
Author(s):  
Alessandro Attanzio ◽  
Antonella D’Anneo ◽  
Francesco Pappalardo ◽  
Francesco Paolo Bonina ◽  
Maria Antonia Livrea ◽  
...  

Manna, a very singular vegetable product derived from the spontaneous solidification of the sap of some Fraxinus species, has long been known for its mild laxative and emollient properties. In this work, a hydro-alcoholic extract of manna (HME) from Sicilian Fraxinus angustifolia Vahl was investigated using HPLC-DAD to find phenol components and using chemical and biological in vitro assays to determine its reducing, antioxidant and anti-inflammatory capacity. We identified elenolic acid, tyrosol, hydroxytyrosol, catechin, fraxetin, verbascoside, gallic acid, procyanidin-B1, and luteolin 3,7 glucoside, in order of abundance. Measurements of total antioxidant activity by Folin-Ciocalteu reaction and ferric reducing ability (FRAP), as well as of scavenger activity towards ABTS•+, DPPH•, and perferryl-myoglobin radicals, showed that the phytocomplex effectively reduced oxidants with different standard potentials. When compared with vitamin E, HME also behaved as an efficient chain-breaking antioxidant against lipoperoxyl radicals from methyl linoleate. In cellular models for oxidative stress, HME counteracted membrane lipid oxidation of human erythrocytes stimulated by tert-butyl hydroperoxide and prevented the generation of reactive oxygen species, as well as the GSH decay in IL-1β–activated intestinal normal-like cells. Moreover, in this in vitro intestinal bowel disease model, HME reduced the release of the pro-inflammatory cytokines IL-6 and IL-8. These findings may suggest that manna acts as an antioxidant and anti-inflammatory natural product in humans, beyond its well-known effects against constipation.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3192 ◽  
Author(s):  
Hugo Pereira ◽  
Joana Silva ◽  
Tamára Santos ◽  
Katkam N. Gangadhar ◽  
Ana Raposo ◽  
...  

Commercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.


2020 ◽  
Vol 26 (39) ◽  
pp. 5021-5029 ◽  
Author(s):  
Desu N.K. Reddy ◽  
Fu-Yung Huang ◽  
Shao-Pin Wang ◽  
Ramya Kumar

Background: Recent studies have focused on the nanoformulations of curcumin to enhance its solubility and bioavailability. The medicinal properties of curcumin-C3 complex, which is a combination of three curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) is less explored. Objective: The aim of this study was to prepare curcumin-C3 encapsulated in chitosan nanoparticles, characterize and evaluate their antioxidant and antibacterial potential. Methods: Ionic gelation method was used to prepare curcumin-C3 nanoparticles and was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and nanoparticle tracking analysis. In vitro assays were performed to assess drug release, antioxidant and antibacterial activities. Results: Curcumin-C3-chitosan nanoparticle showed an increased entrapment efficiency of >90%, drug release and improved antioxidant potential. Moreover, curcumin-C3-chitosan nanoparticle showed stronger inhibition of Escherichia coli and Staphylococcus aureus. Conclusion: Chitosan is a suitable carrier for curcumin-C3 nanoparticle and can be used as a drug delivery system in the treatment of inflammatory and bacterial diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4100-4100
Author(s):  
Sophie Charbonneau ◽  
Henry Peng ◽  
Pang N Shek ◽  
Mark Blostein

Abstract We have previously shown that an ideal amphipathic helical peptide of K7L15 composition (IAP) accelerates factor IXa-mediated factor X turnover and factor Xamediated prothrombin turnover in a phospholipid free system (Biochem J., 2008, 412:545). Under these conditions, IAP behaves as a phospholipid membrane allowing coagulation factors to bind and exert their actions. However, when IAP is used with in vitro assays that employ phospholipids such as an active partial thromboplastin time (aPTT), IAP paradoxically behaves as an anticoagulant by prolonging clotting times. We hypothesize that this anticoagulant effect occurs by blocking binding sites for coagulation factors on phospholipids membranes. To test this hypothesis, we employed three phopholipid-dependant coagulation assays, the aPTT, dilute PT and dilute RVV, with both low and high concentrations of phospholipids. We show that these coagulation times are prolonged by IAP in a concentration dependent manner and that this prolongation is abrogated by adding excess phospholipid, demonstrating phospholpid dependence for this inhibition. In purified tenase and prothrombinase assays, in the presence of phospholipids, IAP inhibits substrate turnover consistent with our hypothesis. To show direct binding between IAP and phospholipids, we conducted fluorescence spectroscopy experiments and show direct binding between IAP and phospholipid membranes. In summary, the above data demonstrate that IAP acts as an anticoagulant by blocking the interaction of coagulation factors with phospholipids membranes.


Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1653-1669
Author(s):  
Hamza Elsayed Ahmed Mohamed ◽  
Shakeeb Afridi ◽  
Ali Talha Khalil ◽  
Tanzeel Zohra ◽  
Muhammad Ali ◽  
...  

Aim: The biosynthesis of chromium oxide nanoparticles (Cr2O3 NPs), using Hyphaene thebaica as a bioreductant, for assessment of their potential nanomedicinal applications. Materials & methods: Biosynthesized Cr2O3 NPs were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray spectroscopy, scanning and transmission electron microscopy, selected area electron diffraction, UV–Vis spectroscopy and ζ-potential measurement. In vitro assays were used to assess the biological properties of Cr2O3 NPs. Results: Nanoparticles with size approximately 25–38 nm were obtained with a characteristic Cr–O vibration at 417 cm-1. A broad spectrum antimicrobial potential and antioxidant nature is reported. Slight inhibition of polio virus and biocompatibility at low doses was observed. Conclusion: We conclude a multifunctional nature of biogenic Cr2O3 NPs.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 491
Author(s):  
Itzel P. Torres-Avila ◽  
Itzia I. Padilla-Martínez ◽  
Nury Pérez-Hernández ◽  
Angel E. Bañuelos-Hernández ◽  
Julio C. Velázquez ◽  
...  

This investigation describes the formation of crystalline nanotubes of titanium oxide on the surface of a Ti-6Al-4V alloy and its biological evaluation. The formation of nanotubes was performed by the anodic oxidation technique with a constant work potential of 60 V but with different anodizing times of 10, 20, 30, 40, 50, and 60 min used to evaluate their effects on the characteristics of the nanotubes and their biological activity. A mixture of ethylene glycol, water, and ammonium fluoride (NH4F) was used as the electrolytic fluid. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were applied to determine the morphology and crystalline nature of the nanotubes, showing a well-defined matrix of nanotubes of titanium oxide with a crystalline structure and a diameter in the range of 52.5 ± 5.13 to 95 ± 11.92 nm. In contrast, the XRD patterns showed an increase of defined peaks that directly correlated with treatment times. Moreover, in vitro assays using an innovative cell culture device demonstrated that the inner diameter of the nanotubes directly correlated with cell proliferation.


1984 ◽  
Vol 99 (1) ◽  
pp. 248-259 ◽  
Author(s):  
J E Rothman ◽  
L J Urbani ◽  
R Brands

Mixed monolayers containing vesicular stomatitis virus-infected Chinese hamster ovary clone 15B cells (lacking UDP-N-acetylglucosamine transferase I, a Golgi enzyme) and uninfected wild-type Chinese hamster ovary cells were formed. Extensive cell fusion occurs after the monolayer is exposed to a pH of 5.0. The vesicular stomatitis virus encoded membrane glycoprotein (G protein) resident in the rough endoplasmic reticulum (labeled with [35S]methionine) or Golgi complex (labeled with [3H]palmitate) of 15B cells at the time of fusion can reach Golgi complexes from wild-type cells after fusion; G protein present in the plasma membrane cannot. Transfer to wild-type Golgi complexes is monitored by the conversion of G protein to an endoglycosidase H-resistant form upon arrival, and also demonstrated by immunofluorescence microscopy. G protein in the Golgi complex of the 15B cells at the time of fusion exhibits properties vis a vis its transfer to an exogenous Golgi population identical to those found earlier in a cell-free system (Fries, E., and J. E. Rothman. 1981. J. Cell Biol., 90: 697-704). Specifically, pulse-chase experiments using the in vivo fusion and in vitro assays reveal the same two populations of G protein in the Golgi complex. The first population, consisting of G protein molecules that have just received their fatty acid, can transfer to a second Golgi population in vivo and in vitro. The second population, entered by G protein approximately 5 min after its acylation, is unavailable for this transfer, in vivo and in vitro. Presumably, this second population consists of those G-protein molecules that had already been transferred between compartments within the 15B Golgi population, in an equivalent process before cell fusion or homogenization for in vitro assays. Evidently, the same compartment boundary in the Golgi complex is detected by these two measurements. The surprisingly facile process of glycoprotein transit between Golgi stacks that occurs in vivo may therefore be retained in vitro, providing a basis for the cell-free system.


Nanomedicine ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 467-488 ◽  
Author(s):  
Hamza E Ahmed Mohamed ◽  
Shakeeb Afridi ◽  
Ali T Khalil ◽  
Muhammad Ali ◽  
Tanzeel Zohra ◽  
...  

Aim: To demonstrate synthesis of cerium oxide nanoparticles (CeO2 NPs) by a green method using Hyphaene thebaica, and investigate their therapeutic applications. Materials & methods: Structural, vibrational and luminescent properties were established using x-ray diffraction, Fourier transformed infrared spectroscopy, Raman spectroscopy, ultraviolet absorption spectroscopy, selected area electron diffraction, electron microscopy and photolumincence spectroscopy. Therapeutic properties were established using different in vitro assays. Results: CeO2 NPs were determined to be crystalline in nature with a grain size of approximately 14 nm. They had characteristic Ce–O vibration at 481 cm-1. Photoluminescence spectra revealed broad bands at 463 and 600 nm. ζ potential was recorded as -17.2 mV. Potent antimicrobial and antiviral properties with hemocompatibility were reported. Conclusion: Biosynthesized CeO2 NPs revealed multifunctional therapeutic properties.


Molecules ◽  
2017 ◽  
Vol 22 (4) ◽  
pp. 600 ◽  
Author(s):  
Mariline Gameiro ◽  
Renata Silva ◽  
Carolina Rocha-Pereira ◽  
Helena Carmo ◽  
Félix Carvalho ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Rumbo ◽  
Cristina Cancho Espina ◽  
Jürgen Gassmann ◽  
Olivier Tosoni ◽  
Rocío Barros García ◽  
...  

AbstractDue to their exceptional physico-chemical and magnetic characteristics, rare earth (RE) permanent magnets are applied in multiple critical technologies. However, several environmental and economic difficulties arising from obtaining RE elements have prompted the search of alternatives with acceptable magnetic properties but containing a lower percentage of these elements in their composition. The aim of this work was to perform a preliminary toxicological evaluation of three forms of newly developed RE-lean alloys (one NdFeTi and two NdFeSi alloys) applying different in vitro assays, using as a benchmark a commercial NdFeB alloy. Thus, the effects of the direct exposure to powder suspensions and to their derived leachates were analysed in two model organisms (the A549 human cell line and the yeast Saccharomyces cerevisiae) applying both viability and oxidative stress assays. Moreover, the impact of the alloy leachates on the bioluminescence of Vibrio fischeri was also investigated. The obtained data showed that only the direct interaction of the alloys particulates with the applied organisms resulted in harmful effects, having all the alloys a comparable toxicological potential to that presented by the reference material in the conditions tested. Altogether, this study provides new insights about the safety of NdFeTi and NdFeSi alloys.


Sign in / Sign up

Export Citation Format

Share Document