scholarly journals Influence of 1.5 wt.% Bi on the Microstructure, Hardness, and Shear Strength of Sn-0.7Cu Solder Joints after Isothermal Annealing

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5134
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
Siti Farahnabilah Muhd Amli ◽  
Rita Mohd Said ◽  
...  

This manuscript reports the isothermal annealing effect on the mechanical and microstructure characteristics of Sn-0.7Cu-1.5Bi solder joints. A detailed microstructure observation was carried out, including measuring the activation energy of the intermetallic compound (IMC) layer of the solder joints. Additionally, the synchrotron µX-ray fluorescence (XRF) method was adopted to precisely explore the elemental distribution in the joints. Results indicated that the Cu6Sn5 and Cu3Sn intermetallic layers thickness at the solder/Cu interface rises with annealing time at a rate of 0.042 µm/h for Sn-0.7Cu and 0.037 µm/h for Sn-0.7Cu-1.5Bi. The IMC growth’s activation energy during annealing is 48.96 kJ mol-1 for Sn-0.7Cu, while adding Bi into Sn-0.7Cu solder increased the activation energy to 55.76 kJ mol−1. The µ-XRF shows a lower Cu concentration level in Sn-0.7Cu-1.5Bi, where the Bi element was well dispersed in the β-Sn area as a result of the solid solution mechanism. The shape of the IMC layer also reconstructs from a scallop shape to a planar shape after the annealing process. The Sn-0.7Cu hardness and shear strength increased significantly with 1.5 wt.% Bi addition in reflowed and after isothermal annealing conditions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Cui ◽  
Keke Zhang ◽  
Di Zhao ◽  
Yibo Pan

AbstractThrough ultrasonic wave assisted Sn2.5Ag0.7Cu0.1RExNi/Cu (x = 0, 0.05, 0.1) soldering test and − 40 to 125 °C thermal shock test, the microstructure and shear properties of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling were studied by the SEM, EDS and XRD. The results show that the Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints with high quality and high reliability can be obtained by ultrasonic assistance. When the ultrasonic vibration power is 88 W, the ultrasonic-assisted Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu solder joints exhibits the optimized performance. During the thermal cycling process, the shear strength of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had a linear relationship with the thickness of interfacial intermetallic compound (IMC). Under the thermal cycling, the interfacial IMC layer of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints consisted of (Cu,Ni)6Sn5 and Cu3Sn. The thickness of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints was linearly related to the square root of equivalent time. The growth of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had an incubation period, and the growth of IMC was slow within 300 cycles. And after 300 cycles, the IMC grew rapidly, the granular IMC began to merge, and the thickness and roughness of IMC increased obviously, which led to a sharp decrease in the shear strength of the solder joints. The 0.05 wt% Ni could inhibit the excessive growth of IMC, improve the shear strength of solder joints and improve the reliability of solder joints. The fracture mechanism of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints changed from the ductile–brittle mixed fracture in the solder/IMC transition zone to the brittle fracture in the interfacial IMC.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 518 ◽  
Author(s):  
Congcong Cao ◽  
Keke Zhang ◽  
Baojin Shi ◽  
Huigai Wang ◽  
Di Zhao ◽  
...  

The interface microstructure and shear strength of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal-cycle loading were investigated with scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and physical and chemical tests. The results show that an intermetallic compound (IMC) layer of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints evolved gradually from the scalloped into larger wavy forms with increasing number of thermal cycles. The roughness and average thickness of IMC increased with thermal-cycle loading. However, at longer thermal-cycle loading, the shear strength of the joints was reduced by about 40%. The fracture pathway of solder joints was initiated in the solder seam with ductile fracture mechanism and propagated to the solder seam/IMC layer with ductile-brittle mixed-type fracture mechanism, when the number of thermal cycles increased from 100 to 500 cycles. By adding 0.05 wt.% Ni, the growth of the joint interface IMC could be controlled, and the roughness and average thickness of the interfacial IMC layer reduced. As a result, the shear strength of joints is higher than those without Ni. When compared to joint without Ni, the roughness and average thickness of 0.05 wt.% Ni solder joint interface IMC layer reached the minimum after 500 thermal cycles. The shear strength of that joint was reduced to a minimum of 36.4% of the initial state, to a value of 18.2 MPa.


2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


Author(s):  
С.В. Пляцко ◽  
Л.В. Рашковецкий

AbstractThe effect of a fast neutron flux (Φ = 10^14–10^15 cm^–2) on the electrical and photoluminescence properties of p -CdZnTe single crystals is studied. Isothermal annealing is performed ( T = 400–500 K), and the activation energy of the dissociation of radiation-induced defects is determined at E _D ≈ 0.75 eV.


2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


Sign in / Sign up

Export Citation Format

Share Document