scholarly journals Viscosity Approximation of PDMS Using Weibull Function

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6060
Author(s):  
Andrzej Chmielowiec ◽  
Weronika Woś ◽  
Justyna Gumieniak

The viscosity of a fluid is one of its basic physico-chemical properties. The modelling of this property as a function of temperature has been the subject of intensive studies. The knowledge of how viscosity and temperature variation are related is particularly important for applications that use the intrinsic friction of fluids to dissipate energy, for example viscous torsional vibration dampers using high viscosity poly(dimethylsiloxane) as a damping factor. This article presents a new method for approximating the dynamic viscosity of poly(dimethylsiloxane). It is based on the three-parameter Weibull function that far better reflects the relationship between viscosity and temperature compared with the models used so far. Accurate mapping of dynamic viscosity is vitally important from the point of view of the construction of viscous dampers, as it allows for accurate estimation of their efficiency in the energy dissipation process.

Author(s):  
G. S. Tagore ◽  
G. D. Bairagi ◽  
R. Sharma ◽  
P. K. Verma

A study was conducted to explore the spatial variability of major soil nutrients in a soybean grown region of Malwa plateau. From the study area, one hundred sixty two surface soil samples were collected by a random sampling strategy using GPS. Then soil physico-chemical properties i.e., pH, EC, organic carbon, soil available nutrients (N, P, K, S and Zn) were measured in laboratory. After data normalization, classical and geo-statistical analyses were used to describe soil properties and spatial correlation of soil characteristics. Spatial variability of soil physico-chemical properties was quantified through semi-variogram analysis and the respective surface maps were prepared through ordinary Kriging. Exponential model fits well with experimental semi-variogram of pH, EC, OC, available N, P, K, S and Zn. pH, EC, OC, N, P, and K has displayed moderate spatial dependence whereas S and Zn showed weak spatial dependence. Cross validation of kriged map shows that spatial prediction of soil nutrients using semi-variogram parameters is better than assuming mean of observed value for any un-sampled location. Therefore it is a suitable alternative method for accurate estimation of chemical properties of soil in un-sampled positions as compared to direct measurement which has time and costs concerned.


2021 ◽  
Author(s):  
O. Kofanova ◽  
К. Tkachuk ◽  
O. Kofanov ◽  
M. Saveliev ◽  
O. Tverda ◽  
...  

The research is devoted to the in vitro study of the behavior of the model system «irrigation balanced salt solution BSS − H2O» in order to further develop treatment, rehabilitation and prevention measures for patients with ophthalmic diseases. The aim of the investigation is the experimental determination and analysis of physico-chemical properties of irrigated balanced salt solution, the study of its behavior in the aquatic environment to model changes in the characteristics of intraocular fluid and further development of rehabilitation and preventive measures for ophthalmic patients. Materials and Methods. The study used methods of physico-chemical analysis, in particular, densimetry and viscosimetry of model systems containing BSS for intraocular use and double-distilled water in different volume ratios. The density of the system was determined pycnometrically (20.00 0С ± 0.05 0С; 101.3 kPa); the correction for weight loss of bodies in the air has been taken into account. Viscosity was measured under the same conditions with an Ostwald viscometer. Statistical analysis and evaluation of the reliability of the results were performed using such software products as MS Excel 2007, Google Spreadsheets, SPSS Statistics. Results. Approximate mathematical models of the dependences of density and kinematic and dynamic viscosity on the composition of the multicomponent system «BSS – H2O» were obtained with quite high coefficients of determination. Statistical significance and adequacy of model selection were tested by Student's criterion at a significance level of 5 %. To develop therapeutic, prophylactic and rehabilitation measures, mathematical models of kinematic and dynamic viscosity dependences on the density of the «BSS – H2O» system, measured under the same conditions, were built. The models also have high coefficients of determination. Conclusion. The in vitro physico-chemical analysis of the system «BSS – H2O», as well as the obtained approximate mathematical models can be used to predict possible changes in the characteristics of irrigated balanced salt solution during its long stay in the patient's eye.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1803
Author(s):  
Serena Esposito ◽  
Antonello Marocco ◽  
Gianfranco Dell’Agli ◽  
Barbara Bonelli ◽  
Franca Mannu ◽  
...  

In this work, three novel magnetic metal–ceramic nanocomposites were obtained by thermally treating Fe-exchanged zeolites (either A or X) under reducing atmosphere at relatively mild temperatures (750–800 °C). The so-obtained materials were thoroughly characterized from the point of view of their physico-chemical properties and, then, used as magnetic adsorbents in the separation of the target gene factors V and RNASE and of the Staphylococcus aureus bacteria DNA from human blood. Such results were compared with those obtained by using a top ranking commercial separation system (namely, SiMAG-N-DNA by Chemicell). The results obtained by using the novel magnetic adsorbents were similar to (or even better than) those obtained by using the commercial system, both during manual and automated separations, provided that a proper protocol was adopted. Particularly, the novel magnetic adsorbents showed high sensitivity during tests performed with small volumes of blood. Finally, the feasible production of such magnetic adsorbents by an industrial process was envisaged as well.


Author(s):  
Zaur Z. Aghamaliyev ◽  
Vagif M. Abbasov ◽  
Chingiz K. Rasulov ◽  
Igrar G. Nazarov ◽  
Nigar S. Rzaeva ◽  
...  

The paper deals with the results of cycloalkylation of phenol with 1-methylcyclopentene, 1(3)-methylcyclohexene in the presence of aluminum phenolate catalyst and influence of various parameters on the yield of the target product. The reaction temperature was varied from 220 to 280 °C, the reaction time - from 1 to 7 h, molar ratio of phenol to cyclene – from 1:1 to 1:3 mol/mol, the catalyst amount – from 10 to 25%. Maximum yield of 2,6-di(1(3)-methylcycloalkyl)phenols is obtained under the following conditions: temperature - 260-280 °C, duration - 5-6 h, molar ratio of phenol to 1(3)-methylcycloalkene - 1:2 mol/mol and the catalyst amount is 20% based on taken phenol. Simultaneously, the yield of the target products - 2,6-di-(1(3)-methylcycloalkyl)phenols is 44.3-47.1% per taken phenol, the selectivity is 67.4 71.2% on the target product. As a result of the chromatographic studies of the products of phenol cycloalkylation with 1(3)-methylcycloalkenes in the presence of aluminum phenolate catalyst it became clear that the alkylate mainly contains 2,6-dicycloalkyl-substituted phenols (87.4-92.3%). After rectification of the alkylate at low pressure (20 mm Hg), the target products were obtained with a purity of 96.7-98.1% and their physico-chemical properties were determined. The resulting 2,6-di-(1(3)-methylcycloalkyl)phenols were aminomethylated by formaldehyde and aminoethylnonylimidazoline at the ratio of 1:2:2.From theoretical point of view, Mannich bases were obtained with yield of 65.7-71.7% by the interaction of 2,6-di-[1(3)-methylcycloalkyl]phenols with formaldehyde and aminoethylnonyl imidazoline. Physico-chemical properties of synthesized 4-hydroxy-3,5-di-(1(3)-methylcycloalkyl)benzylaminoethylnonylimidazolines were determined.


1956 ◽  
Vol 29 (4) ◽  
pp. 1369-1372
Author(s):  
G. A. Blokh ◽  
E. A. Golubkova ◽  
G. P. Miklukhin

Abstract One of the most important problems in the field of the physics and chemistry of rubber is that of vulcanization. Until now no single theory has been established, which elucidates the complex physico-chemical changes which occur during this process. Still more obscure has been the mechanism of the action of vulcanization accelerators, which, as is well known, not only reduce the time and the temperature of vulcanization, but also influence the physico-mechanical and chemical properties of the rubber. Most investigators have assumed that in the acceleration process a reaction with sulfur converts it to an active form which is capable of bringing about vulcanization at a lower temperature and at a greater rate, than with ordinary elemental sulfur in the absence of an accelerator. This point of view is based on the experimental fact that the vulcanization of rubber by sulfur dioxide and hydrogen sulfide, for example, which form sulfur in the nascent condition, proceeds rapidly even at room temperature. Investigators have also assumed that in the vulcanization process activation of sulfur in the presence of accelerators may occur by different mechanisms. It is possible that the accelerator, reacting with elemental sulfur, forms unstable intermediate compounds, which decompose with liberation of sulfur in an active form. The latter reacts with rubber, and the regenerated accelerator reacts again with elemental sulfur, etc. However, a different process is possible for the activation of elemental sulfur. By this second mechanism the unstable combination of accelerator and sulfur reacts directly with rubber without the formation of active sulfur. Both these mechanisms necessarily assume the formation of intermediate unstable combinations of the accelerator with sulfur. However, direct, experimentally-based demonstrations of such an interaction are lacking in the literature. There exist only theoretical hypotheses concerning the nature of the possible intermediate combination of the accelerator with sulfur. According to Ostromislensky's concepts, further developed by Bedford, such an intermediate compound has the character of a polysulfide. According to Bruni and Romani, this intermediate compound is a disulfide. As is well known, the disulfide theory was placed in doubt by Zaide and Petrov on the basis of data from the vulcanization of rubber in the presence of benzothiazolyl disulfide.


Author(s):  
Debasmrity Mukherjee ◽  
Ashis Kumar Paul

The coast of Henry's island, extending from Saptamukhi River in the east to Bakkhali River in the West. In the hot and humid climate of the Sundarban, a negligible input of fresh water through tidal creeks, high evaporation rate at the surface area are the probable reasons behind the evolution of Hypersaline patches of Henry's and Patibunia Island. The dense salt patches develop in the abandoned portion of the surface then sinks and move out of the tidal estuaries as subterranean flow or a bottom current to make the environment more saline. Development of Saltpan is one of the major hindrances for the growth of mangroves and hampers the ecological balance of Sundarban. Present paper attempts to highlight- I) To study and identification of Geomorphological settings of both island. ii) Analysis of Physico-chemical properties of hyper saline soil. iii) Identification of hyper-saline patches and their impact on mangrove degradation. Application of remote sensing technique and GIS analysis help to find out the relationship between mangrove degradation and salinity within the islands area in the last few decades. Development of hyper saline patches and changing environmental parameters are how much responsible for the mangrove degeneration process are major issues of this paper. The Forest Department has attempted to restore the growth of mangrove and improve fragile ecosystem but without understanding the geomorphology and environmental condition, it is not possible to implement proper managemental strategies for wetland restoration process.


2018 ◽  
Vol 20 (21) ◽  
pp. 14525-14536 ◽  
Author(s):  
Daniel Lundberg ◽  
Dorota Warmińska ◽  
Anna Fuchs ◽  
Ingmar Persson

The relationship between the structural and volumetric properties of ions in solvents with different physico-chemical properties has been studied for 19 cations and six anions in six solvents.


ASAIO Journal ◽  
1997 ◽  
Vol 43 (2) ◽  
pp. 2
Author(s):  
K. Uchida ◽  
C. Nojiri ◽  
M. Waki ◽  
D. Mizumoto ◽  
T. Kido ◽  
...  

2014 ◽  
Vol 61 (2) ◽  
pp. 49-54
Author(s):  
M. Stankovičová ◽  
Ž. Bezáková ◽  
P. Mokrý ◽  
P. Salát ◽  
M. Kočík ◽  
...  

Abstract The aim of this paper is the study of physico-chemical properties of the chosen compounds, derivatives of 2-hydroxy-3-[2-(4-methoxyphenyl) ethylamino]propyl-4-[(alkoxycarbonyl)amino]benzoates and 2-hydroxy-3-[2-(2-methoxyphenyl)ethylamino]propyl-4-[(alkoxycarbonyl) amino]benzoates with potential ultra-short beta-adrenolytic activity. The studied compounds are different in the position of the substituent on the benzene ring in the side chain as well as in the aromatic ring in position 4 with alkyl- (methylto butyl-) carbamate. The physico-chemical characteristics, for example, lipophilicity, surface activity, adsorbability, acidobasic properties etc., are very important for the explanation of the relationship between structure and biological activity of the drug. These parameters serve as the base of quantitative structure-activity study. The goal of this work is to establish the spectral characteristics of studied compounds in UV-area, pKa values, the parameters of lipophilicity (the values of Rf and RM from thin layer chromatography, retention time t´R and capacity factor k´ from liquid chromatography and experimental partition coefficients log P´ values), surface tension, critical micelle concentrations, the adsorbability of compounds expressed by percent of adsorbed compound on active charcoal β% as well as by Freundlich adsorption isotherms. The obtained values are correlated with the parameters characterising the size of molecule, for example, the number of carbon atoms on carbamate functional group.


Sign in / Sign up

Export Citation Format

Share Document