scholarly journals Characteristics of the Structure, Mechanical, and Tribological Properties of a Mo-Mo2N Nanocomposite Coating Deposited on the Ti6Al4V Alloy by Magnetron Sputtering

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6819
Author(s):  
Stanisław Adamiak ◽  
Wojciech Bochnowski ◽  
Andrzej Dziedzic ◽  
Łukasz Szyller ◽  
Dominik Adamiak

Mo-Mo2N nanocomposite coating was produced by reactive magnetron sputtering of a molybdenum target, in the atmosphere, of Ar and N2 gases. Coating was deposited on Ti6Al4V titanium alloy. Presented are the results of analysis of the XRD crystal structure, microscopic SEM, TEM and AFM analysis, measurements of hardness, Young’s modulus, and adhesion. Coating consisted of a-Mo phase, constituting the matrix, and g-Mo2N reinforcing phase, which had columnar structure. The size of crystallite phases averaged 20.4 nm for the Mo phase and 14.1 nm for the Mo2N phase. Increasing nitrogen flow rate leads to the fragmentation of the columnar grains and increased hardness from 22.3 GPa to 27.5 GPa. The resulting coating has a low Young’s modulus of 230 GPa to 240 GPa. Measurements of hardness and Young’s modulus were carried out using the nanoindentation method. Friction coefficient and tribological wear of the coatings were determined with a tribometer, using the multi-cycle oscillation method. Among tested coatings, the lowest friction coefficient was 0.3 and wear coefficient was 10 × 10−16 m3/N∙m. In addition, this coating has an average surface roughness of RMS < 2.4 nm, determined using AFM tests, as well as a good adhesion to the substrate. The dominant wear mechanism of the Mo-Mo2N coatings was abrasive wear and wear by oxidation. The Mo-Mo2N coating produced in this work is a prospective material for the elements of machines and devices operating in dry friction conditions.

2016 ◽  
Vol 33 (6) ◽  
pp. 769-776 ◽  
Author(s):  
Y.-R. Jeng ◽  
S. Islam ◽  
K-T. Wu ◽  
A. Erdemir ◽  
O. Eryilmaz

AbstractHydrogenated diamond like Carbon (H-DLC) is a promising lubricious coating that attracted a great deal of interest in recent years mainly because of its outstanding tribological properties. In this study, the nano-mechanical and -tribological properties of a range of H-DLC films were investigated. Specifically, four kinds of H-DLC coatings were produced on Si substrates in pure acetylene, pure methane, 25% methane + 75% hydrogen, 50% methane + 50% hydrogen discharge plasmas using a plasma enhanced chemical vapour deposition (PECVD) system. Nano indentation was performed to measure the mechanical properties such as hardness and young's modulus and nanoscartching was performed to investigate the frictional behavior and wear mechanism of the H-DLC samples in open air. Moreover, Vickers indentation method was utilized to assess the fracture toughness of the samples. The results revealed that there is a strong correlation between the mechanical properties (hardness, young's modulus, fracture toughness) and the friction coefficient of DLC coatings and the source gas chemistry. Lower hydrogen to carbon ratio in source gas leads to higher hardness, young's modulus, fracture toughness and lower friction coefficient. Furthermore, lower wear volume of the coated materials was observed when the friction coefficient was lower. It was also confirmed that lower hydrogen content of the DLC coating leads to higher wear resistance under nanoscratch conditions.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 107-111
Author(s):  
Anita PTAK ◽  
Piotr KOWALEWSKI

For the polymeric materials, changing of the temperature causes changes in mechanical and tribological properties of sliding pairs. The goal of the present study was to determine the change in Young's modulus and kinetic friction coefficient depending of the temperature. Three thermoplastic polymers, PA6, PET and PEEK, were tested. These materials cooperated in sliding motion with a C45 construction steel disc. As part of the experiment, the Young's modulus tests (by 3-point bending method) and kinetic friction coefficient studies (using pin-on-disc stand) were carried out. The temperature range of mechanical and tribological tests was determined at T = –50°C±20°C. Comparing the results of mechanical and tribological properties, there is a tendency to decrease the coefficient of friction as the Young's modulus increases while reducing the working temperature.


2007 ◽  
Vol 353-358 ◽  
pp. 2954-2957 ◽  
Author(s):  
Hideo Miura ◽  
Kazuhiko Sakutani ◽  
Kinji Tamakawa

The mechanical properties of copper thin films deposited by sputtering and electroplating were compared using tensile test and nano-indentation. Both the Young’s modulus and tensile strength of the films were found to vary drastically depending on the microstructure of the deposited films. The Young’s modulus of the sputtered film was almost same as that of bulk material. However, the Young’s modulus of the electroplated thin film was about a fourth of that of bulk material. The micro structure of the electroplated film was polycrystalline and a columnar structure with a diameter of a few hundred-micron. The strength of the grain boundaries of the columnar grains seemed to be rather week. In addition, there was a sharp distribution of Young’s modulus along the thickness direction of the film. Though the modulus near the surface of the film was close to that of bulk material, it decreased drastically to about a fourth within the depth of about 1 micron. There was also a plane distribution of Young’s modulus near the surface of the film.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 370 ◽  
Author(s):  
Imane Bouabibsa ◽  
Salim Lamri ◽  
Frederic Sanchette

Metal containing hydrogenated diamond-like carbon coatings (Me-DLC, Me = Al, Ti, or Nb) of 3 ± 0.2 μm thickness were deposited by a magnetron sputtering-RFPECVD hybrid process in an Ar/H2/C2H2 mixture. The composition and structure were investigated by Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The residual stress was measured using the curvature method and nanoindentation was used to determine the hardness and the Young’s modulus. A Ball-on-disk tribometer was employed to investigate the frictional properties and sliding wear resistance of films. The results show that the properties depend on the nature and the Me content in the coatings. The doping of the DLC coatings leads to a decrease in hardness, Young’s modulus, and residual stresses. Wear rate of the films first decreases with intermediate Me contents and then increases for higher Me contents. Significant improvements in the friction coefficient on steel as well as in the wear rate are observed for all Al-DLC coatings, and, concerning the friction coefficient, the lowest value is measured at 0.04 as compared to 0.07 for the undoped DLC.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3571
Author(s):  
Mingxue Sun ◽  
Yang Xu ◽  
Tiewei Xu

We studied the effect of Cu addition on the hardness of ultra-low carbon steels heat treated with different cooling rates using thermal simulation techniques. The microstructural evolution, Cu precipitation behaviors, variations of Vickers hardness and nano-hardness are comparatively studied for Cu-free and Cu-bearing steels. The microstructure transforms from ferritic structure to ferritic + bainitic structure as a function of cooling rate for the two steels. Interphase precipitation occurs in association with the formation of ferritic structure at slower cooling rates of 0.05 and 0.2 °C/s. Coarsening of Cu precipitates occurs at 0.05 °C/s, leading to lower precipitation strengthening. As the cooling rate increases to 0.2 °C/s, the interphase and dispersive precipitation strengthening effects are increased by 63.9 and 50.0 MPa, respectively. Cu precipitation is partially constrained at cooling rate of 5 °C/s, resulting in poor nano-hardness and Young’s Modulus. In comparison with Cu-free steel, the peak Vickers hardness, nano-hardness and Young’s Modulus are increased by 56 HV, 0.61 GPa and 55.5 GPa at a cooling rate of 0.2 °C/s, respectively. These values are apparently higher than those of Cu-free steel, indicating that Cu addition in steels can effectively strengthen the matrix.


2017 ◽  
Vol 898 ◽  
pp. 1447-1452
Author(s):  
Kan Zhang ◽  
X. Li ◽  
Su Xuan Du ◽  
Ping Ren ◽  
Mao Wen ◽  
...  

The cubic-NbN/NbCN multilayers with modulation periodicity (Λ) ranging from 4.2 to 39.1 nm were deposited on Si (100) substrate by reactive magnetron sputtering in a mixture of Ar and N2 gases. The Λ dependent structural, mechanical and tribological properties for resulting c-NbN/NbCN multilayers were explored. As Λ varied from 4.2 to 39.1 nm, all the films exhibited an obvious modulated structure. Increasing the Λ, the Nb (C,N)(111) peak in XRD gradually shifted to bigger angles and the peak intensity of NbN(111) became stronger. The stress for all multilayers was compressive ranging in between the stress for both NbN and NbCN single layers, and the stress value was stable with increasing Λ. The NbN layer was beneficial to relaxing the compressive stress which induced by NbCN layer. In addition, as Λ increases, the hardness (H) first increased, and then decreased after reaching a maximum value. The obvious enhancement in hardness for multilayers was observed, whose maximum value approaches 43.3 GPa when Λ = 8.4 nm, 37% larger than that obtained by the rule of mixture value. The friction coefficient values of NbN/NbCNmultilayers ranging between 0.34 and 0.4 were much lower than that of NbN monolayer but higher than that of NbCN monolayer were.


Author(s):  
Josefine Michel ◽  
Patrick Kaeding

Regularly the twistlock system is used to mount containers on container vessels or on offshore platforms as service containers in normal climate regions. In this paper the twistlock system is analyzed with respect to mounting auxiliary systems as well as accommodation and service modules to the deck of offshore platforms in arctic regions. When the twistlock systems are used in harsh environment it is also important that the twistlocks withstand the acting forces without great displacements and without exceeding the elastic range. But in arctic regions the mountings must resist additional forces due to ice interaction, cold temperatures and small friction coefficients. Because the existing rules do not include regulations how to analyze the strength of these mountings in arctic regions the influence of the friction coefficients and the Young’s modulus were of interest in this study. This paper summarizes some numerical works on these new discoveries. The results of the computations show that the Young’s modulus has no influence on the stress and the displacement of the bodies. However, the friction coefficient has influence on the stress specified in the simulations for large roll angles.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yibing Wu ◽  
Yang Xiang ◽  
Jiehua Fang ◽  
Xiaokeng Li ◽  
Zunwen Lin ◽  
...  

Abstract Recent studies have shown the importance of cell–substrate interaction on neurone outgrowth, where the Young’s modulus of the matrix plays a crucial role on the neurite length, migration, proliferation, and morphology of neurones. In the present study, PC12 cells were selected as the representative neurone to be cultured on hydrogel substrates with different stiffness to explore the effect of substrate stiffness on the neurone outgrowth. By adjusting the concentration of gelatin methacryloyl (GelMA), the hydrogel substrates with the variation of stiffnesses (indicated by Young’s modulus) from approximately 3–180 KPa were prepared. It is found that the stiffness of GelMA substrates influences neuronal outgrowth, including cell viability, adhesion, spreading, and average neurite length. Our results show a critical range of substrate’s Young’s modulus that support PC12 outgrowth, and modulate the cell characteristics and morphology. The present study provides an insight into the relationship between the stiffness of GelMA hydrogel substrates and PC12 cell outgrowth, and helps the design and optimization of tissue engineering scaffolds for nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document