scholarly journals Effect of Temperature on the Tribological Properties of Selected Thermoplastic Materials Cooperating with Aluminium Alloy

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7318
Author(s):  
Anita Ptak ◽  
Paula Taciak ◽  
Wojciech Wieleba

This article concerns the tribological properties of three selected polymer materials: polyamide PA6, polyethylene PE-HD and polyetheretherketone composite PEEK/BG during sliding against aluminium alloy EN AW-2017A in the presence of hydraulic oil HLP 68. The tests were carried out under contact pressure p of 3.5–11 MPa at ambient temperature T ranging from −20 °C to +20 °C. The dependence of kinetic friction coefficient μk on the two parameters was determined through tribological tests carried out using a pin-on-disc tribometer. A five-level central composite rotatable design (CCRD) was adopted for the experiment. All the test results were statistically analysed. The microhardness of the surface of the polymeric material was measured before and after the friction process. The surface was also examined under SEM. Temperature and contact pressure have been found to have a significant effect on the tribological properties of the tested sliding pairs. Relative to the applied friction conditions, the surfaces after friction showed rather heavy signs of wear.

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
N. Nuraliza ◽  
S. Syahrullail ◽  
M.N. Musa

The use of vegetable oil-based lubricant as a lubricant in various applications has increased and it is eyed by the industry due to its superior tribological properties, besides possessing the potential to replace petroleum-based lubricants. Palm olein is one of alternative lubricants that could be suitable and attractive as a lubricant to be studied due to its advantages and large production in the country. Thus, in this study, the behavior of palm olein characteristics was investigated by using pin-on-disc experiment, in which a hemispherical pin was loaded against the rotating grooved disc. The experiments via sliding were performed with pin-on-disc tester using pure aluminum as the material for hemispherical pin and SKD11 for disc. The test was implemented by dropping continuous flow of palm olein as lubricating oil on sliding surface at different loads applied, which were 10N, 50N, and 100N. The wear rate of the pin and the friction coefficient were also investigated. Moreover, the surface roughness before and after the experiment was analyzed as well. All the results obtained were compared to hydraulic oil and engine oil-SAE 40. From the analysis, the friction coefficient acquired from lubricated with palm olein was the lowest for both conditions. The wear rate obtained for the three lubricants increased from 10N to 100N load for palm oil, but decreased for hydraulic and engine oil-SAE 40. Meanwhile, the wear rate obtained for lubrication with hydraulic oil showed the lowest value compared to Engine oil-SAE 40 and double fractionated palm olein. 


2018 ◽  
Vol 44 ◽  
pp. 00122 ◽  
Author(s):  
Ewelina Niedzielska ◽  
Anna Masek

The aim of this work was carry out accelarated process of ageing for cyclic olefin copolymer ethylene – norbornene (Topas). The Topas cyclic olefin copolymer (COC) family characterize high transparency, excellent mechanical properties and low water permeability. The influence of external factors such as UV radiation, elevated temperature, oxygen effect and humidity causing degradation of polymer macroparticles was also investigated. The properties of the polymer before and after weathering and UV radiation were also compared. Degradability was examinated by measuring color change, FTIR spectrum analysis and determination of the ageing factor k. The tensile strength, elongation at break and hardness of composites by Shore A method were measured. The synergistic effect of temperature, humidity and UV radiation reduces the mechanical properties of the samples tested, while the interaction of only UV radiation on the samples causes a significant change color.


1991 ◽  
Vol 239 ◽  
Author(s):  
J. H. Hsieh ◽  
O. O. Ajayi ◽  
A. Erdemir ◽  
F. A. Nichols

ABSTRACTAg and Ag/Ti films were deposited on ZrO2 substrates by ion-beam-assisted deposition. Adhesion of these films was measured before and after heat treatment at 250°C in air. The results show that a graded interface between Ag and Ti was necessary for the Ag films to survive the heat treatment. Reciprocating pin-on-disc tests were performed at 150°C after heat treatment to investigate the relationship between adhesion and tribological properties. The failure of Ag and Ag/Ti (without graded interface) films was also observed during wear tests. However, this Ag film failure did not result in negative effects. All three Ag-coated substrates show better tribological behavior.


Author(s):  
Gourav Gupta ◽  
Mir Irfan Ul Haq ◽  
Ankush Raina ◽  
Wani K Shafi

The paper investigates the lubricating properties of epoxidised canola oil. The epoxidation is carried out to decrease the unsaturated bonds present in canola oil. Further, metal dichalcogenide nanoparticles (molybdenum disulphide and tungsten disulphide) are mixed in modified canola oil and their effect on rheological and tribological properties is evaluated. The tribological investigation is carried out on a pin-on-disc tribometer with aluminium alloy and steel as tribopairs. The rheological properties of nanofluids have been studied. It is observed that the modification of the canola oil improves the tribological properties of virgin canola oil. The addition of nanoparticles into the modified canola increases the viscosity of the oil with a 1 wt% concentration of nanoparticles. Further, enhancement in the tribological properties is observed with the addition of nanoparticles. A maximum of 54.6% and 30% decrease in coefficient of friction is observed with the use of tungsten disulphide and molybdenum disulphide nanoparticles, respectively.


2021 ◽  
Author(s):  
Fikrat Yusubov

Abstract The present study is aimed to investigate the dry sliding behavior of phenolic friction brake pad materials for industrial applications. Low metallic phenolic friction composites with addition copper-graphite (Cu-C) particles produced by traditional powder metallurgy methods. The friction test is carried out by pin-on-disc configuration on universal tribometer MMW-1 with hardened steel as a counterface material. The plan of experiments conducted by Taguchi’s L27 orthogonal array on MINITAB 19.1.1 software using 3-level design model. Analysis of variance (ANOVA) was performed for predicting and analyzing the effect of design parameters like contact pressure (1.9, 5.75 and 9,6 MPa), sliding velocity (0.64, 1.57 and 2.5 m/s) and filler content (5, 10 and 15%) to tribological properties. Results of modeling and optimization of composites has showed that contact pressure has the greatest impact on the friction process following sliding distance and filler content. On the other hand, the most influential factor for the wear process was the sliding velocity, following contact pressure and finally filler content. It has also been determined that 5–10 Wt.% Cu-C filler content has an effective impact on tribological properties. The friction surface examination of the composites using a scanning electron microscope (SEM) revealed that Cu-C content has a significant effect on improving heat resistance properties.


2021 ◽  
Vol 144 (2) ◽  
Author(s):  
Zhang Yan-chao ◽  
Zhou Rui-min ◽  
Yin Ming-hu ◽  
Zhang Yong-tao ◽  
Hu Hai-tao ◽  
...  

Abstract In order to find a good friction pair for the finger seal, the pin-on-disc friction tests matching the actual working conditions of finger seal are designed based on the performance simulation of finger seal and the similarity principle of PV value, in which the friction characteristics between pins with two different materials (C/C composite or cobalt-base alloy GH605) and discs with two different coatings (Cr3C2 or Al2O3) are tested and analyzed respectively; the test results show that the wear loss of all the friction pairs increases with the load increasing, but the friction coefficient of the C/C composite pin (no matter contacting with Cr3C2 or Al2O3 coating) is much less than that of GH605 pin; in the four kinds of friction pairs, the C/C–Cr3C2 pair has the greatest friction characteristics and least wear loss. Then, to verify the application feasibility of C/C composite in the finger seal further, the bench-scale performance test of the finger seal with C/C–Cr3C2 pair (the finger seal is made of C/C composite, and the rotor surface is coated with Cr3C2) is carried out with a self-developed testing rig; according to the leakage and wear results before and after the durability test lasted for 60 h, there is little distinct trace of destruction on the friction surfaces of finger seal with C/C–Cr3C2 pair after the durability test, which is in good agreement with the result of pin-on-disc friction test; besides, after the durability test, the static leakage of finger seal with C/C–Cr3C2 pair becomes lower than that before and is lower than that of finger seal made of GH605. The test results in this paper indicates that the C/C–Cr3C2 pair has nice friction characteristics and can be a good choice for the friction pair of the finger seal.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3025 ◽  
Author(s):  
Marcin Barszcz ◽  
Mykhaylo Pashechko ◽  
Krzysztof Dziedzic ◽  
Jerzy Jozwik

This paper investigates the friction process between an Fe-based coating and C45 steel with surface-active lubrication, as well as examines the coating surface before and after tribological testing. As a result, it is possible to determine whether the surface undergoes self-organization during friction. Coatings were produced by hardfacing a subeutectic alloy Fe-Mn-C-B modified by silicon, nickel, chromium and copper. Tribological tests were performed using a pin-on-disc tribometer. The pin (coating) and the disc made of steel C45 were subjected to heat treatment (hardening and tempering). The tests were carried out under loads of 3 MPa, 7 MPa and 10 MPa at a constant sliding velocity of 0.4 m/s and a sliding distance of 5700 m using a surface-active lubricant (glycerine oil). Obtained results were compared with the published results of previous tests carried out under the same conditions but under a load of 20 MPa. Obtained microscopic and spectroscopic results demonstrate that that the friction pair materials (the coating made of subeutectic alloy Fe-Mn-C-B modified by Si, Ni, Cr, Cu and C45 steel) and the surface-active lubricant cause self-organization during friction. The friction surface of the coatings has a flay-laminar structure and is covered with triboreaction products. The surface shows the presence of wear-resistant compounds such as oxides, carbides, borides and nitrides.


Author(s):  
Andrei A. Kupreyanov ◽  
Mikhail V. Morozov ◽  
Boris N. Belousov ◽  
Tatiana I. Ksenevich ◽  
Vladimir V. Vantsevich

This paper presents a new experimental test rig and experimental findings on tire elastomer-surface friction characteristics that are necessary for modeling tire thermodynamic characteristics and then tire characteristics, including the μ-curve in the driving and braking modes of operation. Unlike common approaches, the paper offers experimental procedures and test results on both steady and non-steady friction process by introducing (i) velocity factor, (ii) normal pressure distribution, and (iii) a temperature factor in the elastomer-surface contact. The group of (i), (ii), and (iii)-listed factors, taken together, represents the key elements by means of which tribological properties of the tire-road interaction, i.e., an elastomer-surface friction pair, impact the μ-curve.


2017 ◽  
Vol 62 (4) ◽  
pp. 2065-2072 ◽  
Author(s):  
D. Ozimina ◽  
M. Madej ◽  
J. Kowalczyk

Abstract The aim of the study was to determine the effectiveness of the biodegradable cutting fluid used instead of classical, usually toxic. This paper presents the results of tribological studies of a-C:H coatings formed on HS6-5-2C steel by plasma-assisted chemical vapour deposition. The coating structures were examined using a JSM-7100F SEM. The coating microhardness was measured with a Matsuzawa tester. The surface texture analysis was performed before and after the tribological tests with a Talysurf CCI Lite optical profiler. The tribological properties were investigated using a T-01 M tester and a T-17 tester. The tests were carried out under dry friction conditions and lubricated friction conditions using a lubricant with zinc aspartate. The test results show that the layer formed at the interface prevented the moving surfaces. The investigations discussed in this paper have contributed to the development of non-toxic and environmentally-friendly manufacturing because of the use of biodegradable cutting fluid and thin, hard coatings.


Sign in / Sign up

Export Citation Format

Share Document