scholarly journals Collagen/Chitosan Gels Cross-Linked with Genipin for Wound Healing in Mice with Induced Diabetes

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
Balzhima Shagdarova ◽  
Mariya Konovalova ◽  
Yuliya Zhuikova ◽  
Alexey Lunkov ◽  
Vsevolod Zhuikov ◽  
...  

Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.

3 Biotech ◽  
2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Raghuvir Keni ◽  
Karthik Gourishetti ◽  
Manas Kinra ◽  
Pawan G. Nayak ◽  
Rekha Shenoy ◽  
...  

Abstract Botroclot is a marketed preparation containing hemocoagulase, which is an enzyme having coagulant activity, isolated from the snake Botrops atrox. This formulation is used in dental surgeries and other minor surgical wounds. However, the formulation remains untested in diabetic wounds. Hence, we proposed a study for the topical application of Botroclot in high-fat diet (HFD) + Streptozotocin (STZ) induced diabetic rats. HFD was fed initially to rats which facilitates the development of insulin resistance. Thereafter, an injection of STZ (40 mg/kg, i.p.) was given. This resulted in the development of diabetes with elevated fasting glucose and impaired glucose tolerance. After stabilization of blood glucose values, wounds were created by punch biopsy on the dorsal side of the palm of the rat to mimic the diabetic wounds frequently seen in the case of humans. Later, the application of Botroclot on these wounds was carried out for 15 days. Topical application of hemocoagulase improved the wound closure and there was a gradual decrease in inflammatory markers and a substantial increase in collagen deposition occurred. Histopathological findings indicated the same, with an increase in granulation tissue suggesting that the topical application moderately improves the wound healing in diabetic rats. We conclude that Botroclot can have a mild to moderate effect in improving collagen deposition and thus wound contraction, improving wound closure in diabetic wounds in rats. This study also establishes the basis for exploration of agents from venom-based sources in diabetic wound healing.


Author(s):  
Jiang-wen Wang ◽  
Yuan-zheng Zhu ◽  
Xuan Hu ◽  
Jia-ying Nie ◽  
Zhao-hui Wang ◽  
...  

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition. Objective: In this study, we explored if ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo. Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA), using CCK-8 western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effect of ADSC-EVs on the healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids was evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9. Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells.In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9. Conclusion: ADSC-EVs possessed the healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition.Thus ,ADSC-EVs are a promising candidate for the treatment of diabetic wounds .


2020 ◽  
Vol 5 (01) ◽  
pp. 1-10
Author(s):  
Risa Umami ◽  
Riwayati Malika

Diabetes mellitus (DM) is characterized by an increase in glucose levels in the blood due to disorders of glucose metabolism in the body. The pancreas organ of people with DM has a weakness in producing the hormone insulin. As a result, the distribution of blood glucose to other organs of the body is inhibited so that glucose levels in the blood increase which causes DM sufferers to experience longer wound healing than normal humans. Binahong leaves contain alkaloids, saponins and flavonoids which have antibacterial activity which can accelerate the wound healing process. The purpose of this study was to determine the antibacterial effect of binahong leaf extract ointment (Anredera cordifolia) against Staphylococcus aureus bacteria from diabetic wounds. This research includes antibacterial test for binahong leaf extract ointment (Anredera cordifolia) with variations in the concentration of 10%, 20%, and 30% of the concentration of binahong leaf extract of 25% which resulted in a wound coverage percentage of up to 100%, namely at 30% ointment concentration. The conclusion of this study is that there was no wound closure for negative control and positive control in the form of oxytetracycline, the percentage of wound closure was 85%.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hadeel A. Al-Rawaf ◽  
Sami A. Gabr ◽  
Ahmad H. Alghadir

Background. Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. Aim. In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. Methods. Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT–PCR and immunoassay analysis. Results. Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P<0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. Conclusion. Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hani Sinno ◽  
Meenakshi Malhotra ◽  
Justyn Lutfy ◽  
Barbara Jardin ◽  
Sebastian Winocour ◽  
...  

Background. Complements C3 and C5 have independently been shown to augment and increase wound healing and strength. Our goal was to investigate the combinatorial effect of complements C3 and C5 on wound healing. Methods. Each rat served as its own control where topical collagen was applied to one incision and 100 nM of C3 and C5 in collagen vehicle was applied to the other incision (n=6). To compare between systemic effects, a sham group of rats (n=6) was treated with collagen alone on one wound and saline on the other. At day 3, the tissue was examined for maximal breaking strength (MBS) and sectioned for histological examination. Results. There was a statistically significant 88% increase in MBS with the topical application of C3C5 when compared to sham wounds (n<0.05). This was correlated with increased fibroblast and collagen deposition in the treated wounds. Furthermore, there appeared to be an additive hemostatic effect with the C3C5 combination. Conclusions. The combination of complements C3 and C5 as a topical application drug to skin wounds significantly increased wound healing maximum breaking strength as early as 3 days.


2021 ◽  
Author(s):  
Sayani Chattopadhyay ◽  
Leandro B. C. Teixeira ◽  
Laura L. Kiessling ◽  
Jonathan F. McAnulty ◽  
Ronald T. Raines

ABSTRACTTransforming growth factor-β (TGF-β) plays important roles in wound healing. The activity of TGF-β is initiated upon binding of the growth factor to extracellular domains of its receptors. We sought to facilitate activation by clustering these extracellular domains. To do so, we used a known peptide that binds to TGF-β receptors without diminishing their affinity for TGF-β. We conjugated this peptide to a collagen-mimetic peptide that can anneal to damaged collagen in a wound bed. We find that the conjugate enhances collagen deposition and wound closure in mice in a manner consistent with the clustering of TGF-β receptors. This strategy provides a means to upregulate the TGF-β signaling pathway without adding exogenous TGF-β and could inspire means to treat severe wounds.TOC Graphic


Author(s):  
Mothilal K ◽  
Akila CR ◽  
Mahender K ◽  
Chaitanya Kumar K ◽  
Ravi D

Injuries and wounds are any sorts of damage to the skin or subcutaneous tissue. Usually, any wounds of such sorts are self-healed. Sometimes, there may be a delay in healing, and that delay is caused due to the functional delays in various processes of wound healing. All the Ficus plants show similar activities like the antioxidant, anti-inflammatory and wound healing properties 7including skin conditions like ulcers and rheumatism. The anthelmintic property and immunomodulatory are also seen. The herbal extracts of the same family of Ficus in different plants were investigated for the wound healing activity in the excision wound method, and the extracts showed significant activity compared to the drug. All the extracts showed a better healing ability, but the extract of FBO-100 showed the highest activity followed by FMO followed by FHO and finally the FRO. Overall, the activity of the extract ointment was comparable and was significant compared to the standard drug ointment. The wound closure of the extract ointment treated groups were better and were completed in 12 days, and the activity was more than 96%. The herbal extracts of the same family of Ficus in different plants were investigated for the wound healing activity in the excision wound method, and the extracts showed significant activity compared to the drug. The plants of microcarpa, benghalensis, religiosa and hispida are compared for the activity, and the order showed for the activity was FBO>FMO>FHO>FRO.


2020 ◽  
Vol 17 (2) ◽  
pp. 172
Author(s):  
HARMAN AGUSAPUTRA ◽  
MARIA SUGENG ◽  
AYLY SOEKAMTO ◽  
ATIK WULANDARI

<p><strong>Abstract</strong></p><p><strong>Background:</strong> Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as antiseptic has been used frequently to clean woundsin in hospitals and clinics. Hydrogen peroxide has the effectof strong oxidative that can kill pathogens. It can clean up debris and necrotic tissuesin wounds. Hydrogen peroxidealso has hemostatic effect that can help to stop bleeding. Besides antiseptic effects, hydrogen peroxide i s suspected of having negative effect in wound healing. Hydrogen peroxide presumably could cause delayed wound healing by exudate formation and delayed epithelial growth.</p><p><strong>Method</strong>: This study was conducted in the laboratory using 48 white mice that were divided into 2 groups. All the mice were purposely wounded. Afterwards in one group the wounds were clean up using hydrogen peroxide, while in the other group without hydrogen peroxide as control. The wounds of both groups were observed on day 1, day 3 and day 7. On day 1 and day 3, both groups did not show significant difference.</p><p><strong>R</strong><strong>esult</strong> : on day 7 showed that the wound healing in hydrogen peroxide group were delayed. Fifty percent of them had the formation of exudate and 62.5% of them showed delayed epithelial growth.</p><p><strong>Conclusion </strong>: This study could show hydrogen peroxide as wound antiseptic has delayed wound healing effect.</p><p><strong>Keyword</strong>: hydrogen peroxide, wound healing</p>


Sign in / Sign up

Export Citation Format

Share Document