scholarly journals Biobased Composites by Photoinduced Polymerization of Cardanol Methacrylate with Microfibrillated Cellulose

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 339
Author(s):  
Alessandra Vitale ◽  
Samantha Molina-Gutiérrez ◽  
W. S. Jennifer Li ◽  
Sylvain Caillol ◽  
Vincent Ladmiral ◽  
...  

Biobased monomers and green processes are key to producing sustainable materials. Cardanol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized, e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced polymerization is recognized as a sustainable process, less energy intensive than thermal curing; however, cardanol-based UV-cured polymers have relatively low thermomechanical properties, making them mostly suitable as reactive diluents or in non-structural applications such as coatings. It is therefore convenient to combine them with biobased reinforcements, such as microfibrillated cellulose (MFC), to obtain composites with good mechanical properties. In this work a cardanol-based methacrylate monomer was photopolymerized in the presence of MFC to yield self-standing, flexible, and relatively transparent films with high thermal stability. The polymerization process was completed within few minutes even in the presence of filler, and the cellulosic filler was not affected by the photopolymerization process.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5436
Author(s):  
Mateusz Barczewski ◽  
Olga Mysiukiewicz ◽  
Krzysztof Lewandowski ◽  
Daniel Nowak ◽  
Danuta Matykiewicz ◽  
...  

Legislative restrictions and the needs of consumers have created a demand for sustainable materials. Polylactide (PLA) is a biodegradable polyester with advantageous mechanical properties, however, due to its low crystallization rate, it also has low thermomechanical stability. Its range of application temperatures can be widened using nucleating agents and fillers including basalt powder (BP), a waste product from the mining industry. This study analyzed the possibility of enhancing the properties of a PLA-BP composite by chemically treating the filler. Basalt powder was subjected to silanization with 3-aminopropyltriethoxysilane or γ-glycidoxypropyltrimethoxysilane and mixed with PLA at 5–20 wt%. The nucleating effect of a potassium salt of 3,5-bis(methoxycarbonyl) (LAK-301) in the silanized composite was also evaluated. The properties of the materials with silanized BP were compared with the unmodified basalt powder. The miscibility of the filler and the polymer was assessed by oscillatory rheometry. The structure of the composites was studied using scanning electron microscopy and their thermomechanical properties were analyzed using dynamic mechanical thermal analysis. Mechanical properties such as tensile strength, hardness and impact strength, and heat deflection temperature of the materials were also determined. It was concluded that BP-filled nucleated PLA composites presented satisfactory thermomechanical stability without silanization, but chemical treatment could improve the matrix–filler interactions.


Author(s):  
Andrew Backhouse ◽  
Sukanya Hägg Mameng

<p>Stainless steels are well known for their durability in the built environment, having been widely used in external building cladding, street furniture and public artworks; the 1930’s stainless steel roof of the Chrysler Building is a fine example. Modern steelmaking techniques have facilitated the production of stainless steels with 85% recycled content and the production of high strength duplex stainless steels. High strength minimizes the weight of steel required and the inherent corrosion resistance means there is no need for additional corrosion protection even in aggressive coastal environments. These properties allow duplex steels to be efficiently used as durable structural engineering materials. The corrosion performance of several stainless steels, including a newly developed duplex grade LDX2404 (EN1.4662/UNS82441) has been studied in coastal atmospheric conditions. The performance of stainless steels under these test conditions is found to be similar to the performance in existing structural applications in comparable real-world environments. It is observed that the performance of a stainless steel grade can be adequately assessed in a given environment after only a few months or years, as the onset of any detrimental corrosion effects become visibly evident rather quickly. Appropriately selected grades of stainless steel for a given environment can be fully resistant to corrosion effects, and thus can be considered highly durable materials for bridges and other structural uses in the external environment.</p>


2010 ◽  
Vol 65 ◽  
pp. 1-10 ◽  
Author(s):  
Frank Kern ◽  
Rainer Gadow

Alumina-SiC nanocomposites have attracted the interest of material scientists due to their excellent mechanical and thermomechanical properties. Compared to alumina they offer higher strength, toughness and reliability. The high creep resistence of alumina-SiC makes it attractive for high temperature structural applications. Commercial applications however require performing and reliable manufacturing technologies. Ceramic injection molding (CIM) was chosen for the production of small and complex shaped components with narrow dimensional tolerances used in engineering applications. For axially symmetric, elongated component geometries such as tubes or rods, thermoplastic extrusion is a more appropriate forming technology. In this study the complete process cycle of thermoplastic extrusion and injection molding was evaluated with the aim to evaluate their suitability for industrial production of alumina-SiC nanocomposites. Compounding of the feedstocks, forming by CIM and extrusion and the subsequent thermal treatment – debinding and pressureless sintering were investigated. Intermediate and final products were characterized with respect microstructure and mechanical.


2019 ◽  
Vol S (1) ◽  
pp. 24-27
Author(s):  
Ammar AG. Alhamdani ◽  
◽  
Arjwan M. Shuker ◽  
Inas A. Jawad ◽  
◽  
...  

This study assessed the effect of copolymerization on the microbiota of the oral cavity. The plant extraction was converted into aromatic derivatives, which were added to methyl methacrylate monomer. Fourier transform infrared spectroscopy spectra showed no negative effects of these additives on the polymerization process. All the assayed derivatives displayed some degree of antibacterial activity.


2018 ◽  
Vol 34 (8) ◽  
pp. 1144-1153 ◽  
Author(s):  
Madiana Magalhães Moreira ◽  
Lucas Renan Rocha da Silva ◽  
Talita Arrais Daniel Mendes ◽  
Sérgio Lima Santiago ◽  
Selma Elaine Mazzetto ◽  
...  

1995 ◽  
Vol 10 (5) ◽  
pp. 1200-1215 ◽  
Author(s):  
Y-L. Shen ◽  
S. Suresh

Analytical models are presented for the elastoplastic deformation of multilayered materials subjected to fluctuating temperatures. The layered structure comprises an elastic-perfectly plastic ductile material sandwiched between two elastic brittle materials. With creep, heat transfer, and edge effects excluded, closed-form solutions for different characteristic temperatures for thermal cycling are presented as a function of the layer geometries and the thermomechanical properties of the constituent phases. The evolution of curvature, the generation of thermal residual stresses within each layer, and the onset and spread of plasticity in the ductile layer are also examined. It is theoretically shown that reversals of curvature in the layered solid can occur during monotonic changes in temperature, even when the thermomechanical properties of the layer do not vary significantly with temperature. The predictions of the analytical model are seen to compare favorably with experimental observations of curvatures during thermal cycling in the limiting case of bilayer composite with Al–Al2O3 layers and Al–Si layers and in a Si–Al–SiO2 trilayer system. Case studies of the effects of the relative variations in the geometry, elastic properties, and plastic response of the constituent phases on the overall deformation are examined for two practically significant layered systems: a Si–Al–SiO2 layered solid with extensive applications in the electronics industry and a Cr2O3-coated steel with an interlayer of a Ni–Al alloy which is used in structural applications.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3858 ◽  
Author(s):  
Sara Dalle Vacche ◽  
Alessandra Vitale ◽  
Roberta Bongiovanni

Cardanol is a natural alkylphenolic compound derived from Cashew NutShell Liquid (CNSL), a non-food annually renewable raw material extracted from cashew nutshells. In the quest for sustainable materials, the curing of biobased monomers and prepolymers with environmentally friendly processes attracts increasing interest. Photopolymerization is considered to be a green technology owing to low energy requirements, room temperature operation with high reaction rates, and absence of solvents. In this work, we study the photocuring of a commercially available epoxidized cardanol, and explore its use in combination with microfibrillated cellulose (MFC) for the fabrication of fully biobased composites. Wet MFC mats were prepared by filtration, and then impregnated with the resin. The impregnated mats were then irradiated with ultraviolet (UV) light. Fourier Transform InfraRed (FT-IR) spectroscopy was used to investigate the photocuring of the epoxidized cardanol, and of the composites. The thermomechanical properties of the composites were assessed by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. We confirmed that fully cured composites could be obtained, although a high photoinitiator concentration was needed, possibly due to a side reaction of the photoinitiator with MFC.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. M. Saleh ◽  
H. A. Shatta

Solidified cured cement blocks containing different concentrations of the borate waste simulate were impregnated using methyl methacrylate monomer having 0.3% by weight benzoyl peroxide as initiator. Then, the polymerization process was completed by heating the impregnated blocks at ≈40°C. To define the suitability, range of applicability, and compatibility of the inert matrix used, relevant to the borate waste immobilized, the final radioactive borate waste forms are evaluated on the basis of their mechanical and chemical properties. Some factors that may affect the characterization of the obtained final waste form, for example, concentration of the incorporated borate waste solution simulate, aging of the solid waste form, before immersion, immersion in various leachants, and time of immersion, were followed systematically. It could be stated that cement-poly(methylmethacrylate) composite exhibited better mechanical and chemical characters compared to the cement as a unique matrix for immobilization of borate waste concentrates.


Sign in / Sign up

Export Citation Format

Share Document