scholarly journals Design of a 3D-Printed Hand Exoskeleton Based on Force-Myography Control for Assistance and Rehabilitation

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Daniele Esposito ◽  
Jessica Centracchio ◽  
Emilio Andreozzi ◽  
Sergio Savino ◽  
Gaetano D. Gargiulo ◽  
...  

Voluntary hand movements are usually impaired after a cerebral stroke, affecting millions of people per year worldwide. Recently, the use of hand exoskeletons for assistance and motor rehabilitation has become increasingly widespread. This study presents a novel hand exoskeleton, designed to be low cost, wearable, easily adaptable and suitable for home use. Most of the components of the exoskeleton are 3D printed, allowing for easy replication, customization and maintenance at a low cost. A strongly underactuated mechanical system allows one to synergically move the four fingers by means of a single actuator through a rigid transmission, while the thumb is kept in an adduction or abduction position. The exoskeleton’s ability to extend a typical hypertonic paretic hand of stroke patients was firstly tested using the SimScape Multibody simulation environment; this helped in the choice of a proper electric actuator. Force-myography was used instead of the standard electromyography to voluntarily control the exoskeleton with more simplicity. The user can activate the flexion/extension of the exoskeleton by a weak contraction of two antagonist muscles. A symmetrical master–slave motion strategy (i.e., the paretic hand motion is activated by the healthy hand) is also available for patients with severe muscle atrophy. An inexpensive microcontroller board was used to implement the electronic control of the exoskeleton and provide feedback to the user. The entire exoskeleton including batteries can be worn on the patient’s arm. The ability to provide a fluid and safe grip, like that of a healthy hand, was verified through kinematic analyses obtained by processing high-framerate videos. The trajectories described by the phalanges of the natural and the exoskeleton finger were compared by means of cross-correlation coefficients; a similarity of about 80% was found. The time required for both closing and opening of the hand exoskeleton was about 0.9 s. A rigid cylindric handlebar containing a load cell measured an average power grasp force of 94.61 N, enough to assist the user in performing most of the activities of daily living. The exoskeleton can be used as an aid and to promote motor function recovery during patient’s neurorehabilitation therapy.

2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Tomás A. Georgiou ◽  
Davide Asnaghi ◽  
Alva Liang ◽  
Alice M. Agogino

This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rommel S. Araujo ◽  
Camille R. Silva ◽  
Severino P. N. Netto ◽  
Edgard Morya ◽  
Fabricio L. Brasil

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain–machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal—electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4799
Author(s):  
Calvin Young ◽  
Sarah DeDecker ◽  
Drew Anderson ◽  
Michele L. Oliver ◽  
Karen D. Gordon

Wrist motion provides an important metric for disease monitoring and occupational risk assessment. The collection of wrist kinematics in occupational or other real-world environments could augment traditional observational or video-analysis based assessment. We have developed a low-cost 3D printed wearable device, capable of being produced on consumer grade desktop 3D printers. Here we present a preliminary validation of the device against a gold standard optical motion capture system. Data were collected from 10 participants performing a static angle matching task while seated at a desk. The wearable device output was significantly correlated with the optical motion capture system yielding a coefficient of determination (R2) of 0.991 and 0.972 for flexion/extension (FE) and radial/ulnar deviation (RUD) respectively (p < 0.0001). Error was similarly low with a root mean squared error of 4.9° (FE) and 3.9° (RUD). Agreement between the two systems was quantified using Bland–Altman analysis, with bias and 95% limits of agreement of 3.1° ± 7.4° and −0.16° ± 7.7° for FE and RUD, respectively. These results compare favourably with current methods for occupational assessment, suggesting strong potential for field implementation.


2020 ◽  
Author(s):  
John P. Efromson ◽  
Shuai Li ◽  
Michael D. Lynch

AbstractAutosampling from bioreactors reduces error, increases reproducibility and offers improved aseptic handling when compared to manual sampling. Additionally, autosampling greatly decreases the hands-on time required for a bioreactor experiment and enables sampling 24 hrs a day. We have designed, built and tested a low cost, open source, automated bioreactor sampling system, the BioSamplr. The BioSamplr can take up to ten samples from a bioreactor at a desired sample interval and cools them to a desired temperature. The device, assembled from low cost and 3D printed components, is controlled wirelessly by a Raspberry Pi, and records all sampling data to a log file. The cost and accessibility of the BioSamplr make it useful for laboratories without access to more expensive and complex autosampling systems.


Author(s):  
Christoph Wilms ◽  
Marisol Rodríguez-Ugarte ◽  
Eduarde Iañez ◽  
José M. Azorín
Keyword(s):  
Low Cost ◽  

2020 ◽  
Author(s):  
Rommel Soares de Araujo ◽  
Camille Reategui Silva ◽  
Severino Peixoto Nunes Netto ◽  
Edgard Morya ◽  
Fabricio Lima Brasil

Abstract Background: Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain-machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, the present work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. Methods: 3D printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal --- electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training block with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a 2D tracking software. Results: The outcome of the applied manufacturing technique was aesthetically pleasing. HERO's glove can be compared to ordinary clothing. The weight over the hand was around 102 g. The volunteer was able to control the exoskeleton with 91.5\% accuracy. Conclusions: HERO's project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and home, increasing the rehabilitation intervention time. This may favor motor rehabilitation and improve the life quality of stroke survivors.


2020 ◽  
Vol 29 (8) ◽  
pp. 1218-1221
Author(s):  
Matheus Lima Oliveira ◽  
Isabela Christina Ferreira ◽  
Kariny Realino Ferreira ◽  
Gabriela Silveira-Nunes ◽  
Michelle Almeida Barbosa ◽  
...  

Context: Strength assessment is essential to prescribe exercise in sports and rehabilitation. Low-cost valid equipment may allow continuous monitoring of training. Objective: To examine the validity of a very low-cost hanging scale by comparing differences in the measures of peak force to a laboratory grade load cell during shoulder abduction, flexion, extension, and internal and external rotations. Design: Analytical study. Participants: Thirty-two healthy subjects (18 women, age 26 [10] y, height 172 [8] cm, mass 69 [13] kg, body mass index 23 [4] kg/m2). Main Outcome Measures: The dependent variable was the maximal peak force (in kilogram-force). The independent variable was the instrument (laboratory grade load cell and hanging scale). Results: No differences were observed while comparing the results. The intraclass correlation coefficients1,1 ranged from .96 to .99, showing excellent results. The Cronbach alpha test also returned >.99 for all comparisons. The SEM ranged from 0.02 to 0.04 kgf, with an averaged SD from 0.24 to 0.38 kgf. The correlation was classified as high for all tested movements (r > .99; P < .001), with excellent adjusted coefficients of determination (.96 < r2 < .99). Bland–Altman results showed high levels of agreement with bias ranging from 0.27 to 0.48. Conclusions: Hanging scale provides valid measures of isometric strength with similar output measures as laboratory grade load cell.


Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Eric Deng ◽  
Yonas Tadesse

Robotic hands with unique designs, capabilities and applications have been presented in the literature focusing on sensing, actuation, control, powering and manufacturing, most of which are created by manual assembly process. However, due to advancements in additive manufacturing, new capabilities have replaced traditional methods of manufacturing. In this paper, we present a soft 3D-printed robotic hand actuated by custom-made coiled shape memory alloy (SMA) actuators. The hand uses additive manufacturing of flexible thermoplastic polyurethane (TPU) material, which allows flexing at the joint and hence eliminates the need for additional assembly. Here, we present the full characteristics of the robotic hand such as object grasping categorized by size and weight from the ARAT kit and others. The robotic hand is 425 mm in length, weighs 235 g and is able to operate at a frequency of 0.125 Hz without active cooling. It can grasp an object of 55–81 mm widths, weighing up to 133 g, while consuming an average power of 7.82 W. We also show the time domain response of our custom-made coiled SMA to different current inputs, and its corresponding force and displacement. The current design yields a lightweight and low cost artificial hand with significantly simplified manufacturing for applications in robotics and prosthetics.


2019 ◽  
Vol 9 (18) ◽  
pp. 3751 ◽  
Author(s):  
Grant Rudd ◽  
Liam Daly ◽  
Vukica Jovanovic ◽  
Filip Cuckov

We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available off-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield to facilitate ease of wiring. Tests were conducted to verify that the range of motion of the digits and the forces exerted at the fingertip coincided with those of a healthy human hand.


2019 ◽  
Author(s):  
Chem Int

The removal of Cd(II) and Pb(II) ions from aqueous medium was studied using potato peels biomass. The adsorption process was evaluated using Atomic Absorption Spectrophotometer (AAS). The Vibrational band of the potato peels was studied using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption process was carried out with respect to concentration, time, pH, particle size and the thermodynamic evaluation of the process was carried at temperatures of 30, 40, 50 and 60(0C), respectively. The FTIR studies revealed that the potato peels was composed of –OH, -NH, –C=N, –C=C and –C-O-C functional groups. The optimum removal was obtained at pH 8 and contact time of 20 min. The adsorption process followed Freundlich adsorption and pseudo second-order kinetic models with correlation coefficients (R2) greater than 0.900. The equilibrium adsorption capacity showed that Pb(II) ion was more adsorbed on the surface of the potato peels biomass versus Cd (II) ion (200.91 mg/g &gt; 125.00 mg/g). The thermodynamic studies indicated endothermic, dissociative mechanism and spontaneous adsorption process. This study shows that sweet potato peels is useful as a low-cost adsorbent for the removal of Cd(II) and Pb(II) ions from aqueous medium.


Sign in / Sign up

Export Citation Format

Share Document