Mechanical Behavior of an Electrostatically Actuated Microplate

Author(s):  
Xiaopeng Zhao ◽  
Eihab M. Abdel-Rahman ◽  
Ali H. Nayfeh

We present a nonlinear model of electrically actuated microplates. The model accounts for the nonlinearity in the electric forcing as well as mid-plane stretching of the plate. We use a Galerkin approximation to reduce the partial-differential equations of motion to a finite-dimension system of nonlinearly coupled second-order ordinary-differential equations. We find the deflection of the microplate under DC voltage and study the pull-in phenomenon. The natural frequencies and mode shapes are then obtained around the deflected position of the microplate by solving the linear eigenvalue problem. The effect of various design parameters on both the static response and the dynamic characteristics are studied.

2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
Jung-Ge Tseng ◽  
Jonathan Wickert

Abstract Vibration of an array of stacked annular plates, in which adjacent plates couple weakly through an acoustic layer, is investigated through experimental and theoretical methods. Such acoustic coupling manifests itself through split natural frequencies, beating in the time responses of adjacent or separated plates, and system-level modes in which plates in the array vibrate in- or out-of-phase at closely-spaced frequencies. Laboratory measurements, including a technique in which the frequency response function of all in-phase modes but no out-of-phase modes, or visa versa, is measured, demonstrate the contribution of coupling to the natural frequency spectrum, and identify the combinations of design parameters for which it is important. For the lower modes of primary interest here, the natural frequencies of the out-of-phase system modes decrease as the air layer becomes thinner, while those of the in-phase mode remain sensibly constant at the in vacuo values. A vibration model comprising N classical thin plates that couple through the three-dimensional acoustic fields established in the annular cavities between plates is developed, and its results are compared with measurements of the natural frequencies and mode shapes.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


Author(s):  
Mofareh Ghazwani ◽  
Kyle Myers ◽  
Koorosh Naghshineh

Structures such as beams and plates can produce unwanted noise and vibration. An emerging technique can reduce noise and vibration without any additional weight or cost. This method focuses on creating two dimples in the same and opposite direction on a beam’s surface where the effect of dimples on its natural frequencies is the problem of interest. The change in the natural frequency between both cases have a different trend. The strategic approach to calculate natural frequencies is as follows: first, a boundary value model (BVM) is developed for a beam with two dimples and subject to various boundary conditions using Hamilton’s Variational Principle. Differential equations describing the motion of each segment are presented. Beam natural frequencies and mode shapes are obtained using a numerical solution of the differential equations. A finite element method (FEM) is used to model the dimpled beam and verify the natural frequencies of the BVM. Both methods are also validated experimentally. The experimental results show a good agreement with the BVM and FEM results. A fixed-fixed beam with two dimples in the same and opposite direction is considered as an example in order to compute its natural frequencies and mode shapes. The effect of dimple locations and angles on the natural frequencies are investigated. The natural frequencies of each case represent a greater sensitivity to change in dimple angle for dimples placed at high modal strain energy regions of a uniform beam.


Author(s):  
Mohammad A. Bukhari ◽  
Oumar R. Barry

This paper presents the nonlinear vibration of a simply supported Euler-Bernoulli beam with a mass-spring system subjected to a primary resonance excitation. The nonlinearity is due to the mid-plane stretching and cubic spring stiffness. The equations of motion and the boundary conditions are derived using Hamiltons principle. The nonlinear system of equations are solved using the method of multiple scales. Explicit expressions are obtained for the mode shapes, natural frequencies, nonlinear frequencies, and frequency response curves. The validity of the results is demonstrated via comparison with results in the literature. Exact natural frequencies are obtained for different locations, rotational inertias, and masses.


1971 ◽  
Vol 13 (1) ◽  
pp. 51-59 ◽  
Author(s):  
B. Dawson ◽  
N. G. Ghosh ◽  
W. Carnegie

This paper is concerned with the vibrational characteristics of pre-twisted cantilever beams of uniform rectangular cross-section allowing for shear deformation and rotary inertia. A method of solution of the differential equations of motion allowing for shear deformation and rotary inertia is presented which is an extension of the method introduced by Dawson (1)§ for the solution of the differential equations of motion of pre-twisted beams neglecting shear and rotary inertia effects. The natural frequencies for the first five modes of vibration are obtained for beams of various breadth to depth ratios and lengths ranging from 3 to 20 in and pre-twist angle in the range 0–90°. The results are compared with those obtained by an alternative method (2), where available, and also to experimental results.


2002 ◽  
Vol 124 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Akhilesh K. Jha ◽  
Daniel J. Inman ◽  
Raymond H. Plaut

Free vibration analysis of a free inflated torus of circular cross-section is presented. The shell theory of Sanders, including the effect of pressure, is used in formulating the governing equations. These partial differential equations are reduced to ordinary differential equations with variable coefficients using complete waves in the form of trigonometric functions in the longitudinal direction. The assumed mode shapes are divided into symmetric and antisymmetric groups, each given by a Fourier series in the meridional coordinate. The solutions (natural frequencies and mode shapes) are obtained using Galerkin’s method and verified with published results. The natural frequencies are also obtained for a circular cylinder with shear diaphragm boundary condition as a special case of the toroidal shell. Finally, the effects of aspect ratio, pressure, and thickness on the natural frequencies of the inflated torus are studied.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7279
Author(s):  
Jin Wei ◽  
Tao Yu ◽  
Dongping Jin ◽  
Mei Liu ◽  
Dengqing Cao ◽  
...  

A dynamic model of an L-shaped multi-beam joint structure is presented to investigate the nonlinear dynamic behavior of the system. Firstly, the nonlinear partial differential equations (PDEs) of motion for the beams, the governing equations of the tip mass, and their matching conditions and boundary conditions are obtained. The natural frequencies and the global mode shapes of the linearized model of the system are determined, and the orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to derive a set of nonlinear ordinary differential equations (ODEs) that govern the motion of the L-shaped multi-beam jointed structure. The accuracy of the model is verified by the comparison of the natural frequencies solved by the frequency equation and the ANSYS. Based on the nonlinear ODEs obtained in this model, the dynamic responses are worked out to investigate the effect of the tip mass and the joint on the nonlinear dynamic characteristic of the system. The results show that the inertia of the tip mass and the nonlinear stiffness of the joints have a great influence on the nonlinear response of the system.


Sign in / Sign up

Export Citation Format

Share Document