scholarly journals Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 656 ◽  
Author(s):  
Min Jin ◽  
Yingbao Gai ◽  
Xun Guo ◽  
Yanping Hou ◽  
Runying Zeng

The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.

2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


2019 ◽  
Vol 53 (2) ◽  
pp. 56-64
Author(s):  
Xianpeng Shi ◽  
Yugang Ren ◽  
Jialing Tang ◽  
Wentao Fu ◽  
Baohua Liu

AbstractThe remarkable progress in deep submergence science with manned submersibles in the past 50 years has made it possible for us to directly explore the inaccessible underwater extreme environment. Basic research carried out at depths over 1,000 m in the deep ocean has provided dramatic and unique insights into some of the most compelling scientific questions ever posed. Deep research manned submersibles have been widely recognized as indispensable platforms for conducting deep-sea research. Whereas all deep-sea submersibles share the unique feature of direct observation function by scientists and pilots from the cabin, all manned submersibles are equipped with different tools to implement a wide range of jobs in different exploration purposes. These can directly affect productivity and each dive's outcomes, such that it would be meaningful to study the samplers, sensors, and other devices that have been installed on the different deep-sea research manned submersibles around the world. This article will also introduce the research and development status of the JiaoLong manned submersible's operational tools, which have been researched and tested during the sea trials and test operational phase over the past 9 years. Based on developed technologies, state-of-the-art tools are essential to achieve a high-efficiency use for each dive. The article brings forward discussion and suggestions for the development of JiaoLong's operational tools, followed by a conclusion from the perspective of JiaoLong's operation team.


2020 ◽  
Author(s):  
Emilia Neag ◽  
Eniko Kovacs ◽  
Zamfira Dinca ◽  
Anamaria Iulia Török ◽  
Cerasel Varaticeanu ◽  
...  

Gold is a highly required material for a wide range of personal and industrial applications. The high demand for gold, together with the shortage of natural resources and high pollution potential of wastes generated during mining and ore processing activities led to search for alternative sources of gold. A possible source is represented by mine wastes resulting from the processing of polymetallic or sulfidic ores. The reprocessing of wastes and old tailings with moderate to low content of gold offers not only a business opportunity, but also enhances the quality of the surrounding environment, changes the land use and offers a wide range of socio-economic benefits. Cyanidation, the most widespread Au leaching option, is progressively abandoned due to the high risk associated with its use and to the low public acceptance. Therefore, alternative methods such as thiocyanate, thiourea, thiosulphate and halide leaching gained more and more interest. This chapter presents the most important features of some Au leaching methods, emphasizing their advantages, limitations and potential applications.


Author(s):  
Zhekai Deng ◽  
Paul B. Umbanhowar ◽  
Julio M. Ottino ◽  
Richard M. Lueptow

Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe , defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κ ij between particle species i and j , and a characteristic length L , which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κ ij , Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.


2021 ◽  
Vol 1 (2) ◽  
pp. 45-53
Author(s):  
Amos Ndarubu Tsado ◽  
Evans Chidi Egwim ◽  
Solomon Bankole Oyeleke ◽  
Oluwatosin Kudirat Shittu

Background: Proteases are proteolytic enzymes having a wide range of applications in various industries such as the food industry, pharmaceutical industry, medicine, leather and textile. Microorganisms are considered potentially to be the most suitable sources of proteases. Prior to industrial applications of proteases, it is important to investigate physical parameters affecting their enzyme activities. Methods: The microorganisms isolated from different waste dumpsites were screened for proteolytic activity using casein as a substrate. The optimum temperature and pH and kinetic parameters such as Km, Vmax, specific activities and Kcat of the proteases produced were determined to ascertain their industrial prospects. Results: The results obtained showed that A. niger, A. flavus, Penicillium sp, Muccor and Fusarium sp. are the active protease producing fungal isolates while B. subtilis and B. megaterium are the active protease producing bacterial isolates obtained from waste dumpsites. The optimum temperature and pH values of the proteases produced from these isolates were recorded within a close range of 50-60 oC and 8-9 respectively. The protease produced from Penicillium sp isolated from sewage sludge was observed to have maximum Vmax (222.2U/ml) while protease produced from B. subtilis isolated from domestic waste dumpsite was recorded to have the minimum Km value (0.244mg/ml). The protease produced from B. megaterium isolated from the abattoir site was observed to have the highest specific activity (659.02U/mg) while the protease produced from B. subtilis isolated from refuse dumpsite was observed to have a maximum Kcat value (26.42 s-1). Conclusion: These results show that proteases produced by the isolates obtained from; abattoir sites, refuse waste dumpsite, sewage sludge, domestic waste dumpsites, possess remarkable kinetic parameters that are crucial for their industrial applications


2020 ◽  
Vol 2 (1) ◽  
pp. 191-198
Author(s):  
Alan Vaško ◽  
Viera Zatkalíková ◽  
Václav Kaňa

AbstractNodular cast irons are used in a wide range of industrial applications, especially in the automotive industry. SiMo-type of nodular cast iron is suitable for high-temperature applications, for example the exhaust manifolds of the combustion engines; SiCu-type of nodular cast iron is used in various components of tribotechnical units. These automotive components often work in a corrosive environment. Therefore, the aim of this paper is to compare the corrosion resistance of two types of the nodular cast irons (SiMo-type and SiCu-type). Corrosion resistance was determined by the exposure immersion test at ambient temperature. Specimens of both types of nodular cast iron were immersed in 3.5 % NaCl solution (to simulate sea water) and gradually removed from the solution after 1, 2, 4 and 8 weeks. Subsequently, the weight loss (g) and the average corrosion rate (g m−2 day−1) were calculated. Experimental results show that nodular cast iron alloyed by Si and Mo has higher corrosion resistance than the nodular cast iron alloyed with Si and Cu. Moreover, the mechanical properties (evaluated by tensile test, impact bending test and hardness test) and fatigue properties of both types of nodular cast iron has been compared in the paper.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1308
Author(s):  
Weichi Zhang ◽  
Liwen You ◽  
Xiao Meng ◽  
Bozhi Wang ◽  
Dabin Lin

With the rapid growth of numerous portable electronics, it is critical to develop high-performance, lightweight, and environmentally sustainable energy generation and power supply systems. The flexible nanogenerators, including piezoelectric nanogenerators (PENG) and triboelectric nanogenerators (TENG), are currently viable candidates for combination with personal devices and wireless sensors to achieve sustained energy for long-term working circumstances due to their great mechanical qualities, superior environmental adaptability, and outstanding energy-harvesting performance. Conductive materials for electrode as the critical component in nanogenerators, have been intensively investigated to optimize their performance and avoid high-cost and time-consuming manufacture processing. Recently, because of their low cost, large-scale production, simple synthesis procedures, and controlled electrical conductivity, conducting polymers (CPs) have been utilized in a wide range of scientific domains. CPs have also become increasingly significant in nanogenerators. In this review, we summarize the recent advances on CP-based PENG and TENG for biomechanical energy harvesting. A thorough overview of recent advancements and development of CP-based nanogenerators with various configurations are presented and prospects of scientific and technological challenges from performance to potential applications are discussed.


Archaea ◽  
2002 ◽  
Vol 1 (2) ◽  
pp. 75-86 ◽  
Author(s):  
Chiara Schiraldi ◽  
Mariateresa Giuliano ◽  
Mario De Rosa

Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest.


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


Sign in / Sign up

Export Citation Format

Share Document