scholarly journals Secondary Metabolites of the Genus Didemnum: A Comprehensive Review of Chemical Diversity and Pharmacological Properties

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 307
Author(s):  
Diaa T. A. Youssef ◽  
Hadeel Almagthali ◽  
Lamiaa A. Shaala ◽  
Eric W. Schmidt

Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it belongs to the most speciose family (Didemnidae). The genus Didemnum includes the species D. molle, D. chartaceum, D. albopunctatum, and D. obscurum, as well as others, which are well known for their chemically diverse secondary metabolites. To date, investigators have reported secondary metabolites, usually including bioactivity data, for at least 69 members of the genus Didemnum, leading to isolation of 212 compounds. Many of these compounds exhibit valuable biological activities in assays targeting cancers, bacteria, fungi, viruses, protozoans, and the central nervous system. This review highlights compounds isolated from genus Didemnum through December 2019. Chemical diversity, pharmacological activities, geographical locations, and applied chemical methods are described.

2015 ◽  
Vol 10 (7) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Maurice Ducret Awouafack ◽  
Pierre Tane ◽  
Michael Spiteller ◽  
Jacobus Nicolaas Eloff

Many flavonoids have so far been isolated as main secondary metabolites in plant species of the genus Eriosema (Fabaceae), which contains approximately 160 species. A total of 52 flavonoids including isoflavones, dihydroflavonols, flavonols, flavanones, dihydrochalcones, isoflavanone and their pyrano or glucoside derivatives were isolated and characterized from the five species of this genus investigated to date. Total synthesis and semi-synthesis (acetylation, methylation, hydrogenation, and cyclization) of some isolated flavonoids were reported. Due to several significant pharmacological properties (antimicrobial, cytotoxicity, anti-mycobacterial, antioxidant, antiviral, erectile-dysfunction, vasodilatory and hypoglycemic) of the isolated flavonoids and derivatives, more scientists should be interested in investigating Eriosema species. The present review is the first to document all flavonoids that have been reported from the genus Eriosema to date together with their synthetic and semi-synthetic derivatives, and their pharmacological properties. Dihydrochalcones, which are precursors of other classes of flavonoids, are very rare in natural sources and their isolation from Eriosema species may explain the large number of flavonoids found in this genus. It appears that isoflavone could be a marker for species in this genus. The 83 flavonoids (1–83) documented include 52 isolates, 31 semi-synthetic and 3 totally synthetic derivatives. Data were obtained from Google scholar, Pubmed, Scifinder, Sciencedirect, and Scopus. With 52 different flavonoids isolated from only 5 of the approximately 160 species it shows the remarkable chemical diversity of this genus. This compilation of the biological activities and chemical composition may renew the interest of pharmacologists and phytochemists in this genus.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 41 ◽  
Author(s):  
Yasmin A. Elkhawas ◽  
Ahmed M. Elissawy ◽  
Mohamed S. Elnaggar ◽  
Nada M. Mostafa ◽  
Eman Al-Sayed ◽  
...  

One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998–2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities.


2019 ◽  
Vol 5 (2) ◽  
pp. 43 ◽  
Author(s):  
Rufin Marie Kouipou Toghueo ◽  
Fabrice Fekam Boyom

Endophytic fungi have proven their usefulness for drug discovery, as suggested by the structural complexity and chemical diversity of their secondary metabolites. The diversity and biological activities of endophytic fungi from the Terminalia species have been reported. Therefore, we set out to discuss the influence of seasons, locations, and even the plant species on the diversity of endophytic fungi, as well as their biological activities and secondary metabolites isolated from potent strains. Our investigation reveals that among the 200–250 Terminalia species reported, only thirteen species have been studied so far for their endophytic fungi content. Overall, more than 47 fungi genera have been reported from the Terminalia species, and metabolites produced by some of these fungi exhibited diverse biological activities including antimicrobial, antioxidant, antimalarial, anti-inflammatory, anti-hypercholesterolemic, anticancer, and biocontrol varieties. Moreover, more than 40 compounds with eighteen newly described secondary metabolites were reported; among these, metabolites are the well-known anticancer drugs, a group that includes taxol, antioxidant compounds, isopestacin, and pestacin. This summary of data illustrates the considerable diversity and biological potential of fungal endophytes of the Terminalia species and gives insight into important findings while paving the way for future investigations.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1898
Author(s):  
Fauzia Izzati ◽  
Mega Ferdina Warsito ◽  
Asep Bayu ◽  
Anggia Prasetyoputri ◽  
Akhirta Atikana ◽  
...  

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 292 ◽  
Author(s):  
Pablo García ◽  
Ángela Hernández ◽  
Arturo San Feliciano ◽  
Mª Castro

The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.


Author(s):  
Cheng-Peng Sun ◽  
Zi-Li Jia ◽  
Xiao-Kui Huo ◽  
Xiang-Ge Tian ◽  
Lei Feng ◽  
...  

As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010–2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1155
Author(s):  
Jamile S. da Costa ◽  
Ellen de Nazaré S. da Cruz ◽  
William N. Setzer ◽  
Joyce Kelly do R. da Silva ◽  
José Guilherme S. Maia ◽  
...  

The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.


Marine Drugs ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 19 ◽  
Author(s):  
Nourhan Shady ◽  
Mostafa Fouad ◽  
Mohamed Salah Kamel ◽  
Tanja Schirmeister ◽  
Usama Abdelmohsen

Marine sponges are a very attractive and rich source in the production of novel bioactive compounds. The sponges exhibit a wide range of pharmacological activities. The genus Amphimedon consists of various species, such as viridis, compressa, complanata, and terpenensis, along with a handful of undescribed species. The Amphimedon genus is a rich source of secondary metabolites containing diverse chemical classes, including alkaloids, ceramides, cerebrososides, and terpenes, with various valuable biological activities. This review covers the literature from January 1983 until January 2018 and provides a complete survey of all the compounds isolated from the genus Amphimedon and the associated microbiota, along with their corresponding biological activities, whenever applicable.


Author(s):  
Sanrda Kim Tiam ◽  
Muriel Gugger ◽  
Justine Demay ◽  
Severine Le Manach ◽  
Charlotte Duval ◽  
...  

Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in term biosynthetic cluster gene for microcystin, aeruginosin and prenylagaramide for example, we found remarkable strain-specific chemo-diversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we present an efficient integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document