scholarly journals Secondary Metabolites of Purpureocilliumlilacinum

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 18
Author(s):  
Wei Chen ◽  
Qiongbo Hu

Fungi can synthesize a wealth of secondary metabolites, which are widely used in the exploration of lead compounds of pharmaceutical or agricultural importance. Beauveria, Metarhizium, and Cordyceps are the most extensively studied fungi in which a large number of biologically active metabolites have been identified. However, relatively little attention has been paid to Purpureocillium lilacinum. P. lilacinum are soil-habituated fungi that are widely distributed in nature and are very important biocontrol fungi in agriculture, providing good biological control of plant parasitic nematodes and having a significant effect on Aphidoidea, Tetranychus cinnbarinus, and Aleyrodidae. At the same time, it produces secondary metabolites with various biological activities such as anticancer, antimicrobial, and insecticidal. This review attempts to provide a comprehensive overview of the secondary metabolites of P. lilacinum, with emphasis on the chemical diversity and biological activity of these secondary metabolites and the biosynthetic pathways, and gives new insight into the secondary metabolites of medical and entomogenous fungi, which is expected to provide a reference for the development of medicine and agrochemicals in the future.

Planta Medica ◽  
2020 ◽  
Vol 86 (12) ◽  
pp. 805-821 ◽  
Author(s):  
Xiu-Qi Li ◽  
Kuo Xu ◽  
Xin-Min Liu ◽  
Peng Zhang

AbstractFungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 321 ◽  
Author(s):  
Minghua Jiang ◽  
Zhenger Wu ◽  
Heng Guo ◽  
Lan Liu ◽  
Senhua Chen

Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.


1988 ◽  
Vol 66 (1) ◽  
pp. 45-50 ◽  
Author(s):  
R. Fathi-Afshar ◽  
T. M. Allen

Two novel bicyclic diterpenoides, agelasimine-A (9), and agelasimine-B (10), have been isolated from the orange sponge Agelas mauritiana. Also, a new bromine-containing alkaloid, 5-debromomidpacamide (12), along with midpacamide (13) and methyl N-methyl-4,5-dibromopyrrole-2-carboxylate (11), has been isolated. The structures were determined by interpretation of their spectral data. Agelasimine-A and -B exhibit a wide range of interesting biological activities such as cytotoxicity, inhibition of adenosine transfer into rabbit erythrocytes, Ca2+-channel antagonistic action, and α1 adrenergic blockade.


2016 ◽  
Vol 12 ◽  
pp. 969-984 ◽  
Author(s):  
Antonio Dávila-Céspedes ◽  
Peter Hufendiek ◽  
Max Crüsemann ◽  
Till F Schäberle ◽  
Gabriele M König

Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide fromEnhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria.


2019 ◽  
Vol 19 (15) ◽  
pp. 1204-1218 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Junhong Liu ◽  
Dayong Shi ◽  
Zheng Li

: As important marine biological resources, corals produce a large amount of active organic compounds in their secondary metabolic processes, including numerous brominated, chlorinated, and iodinated compounds. These compounds, with novel structures and unique activities, guide the discovery and research of important lead compounds and novel biological mechanisms. Through a large number of literature surveys, this paper summarized a total of 145 halogenated secondary metabolites which were roughly divided into four major classes of terpenes, prostaglandins, steroids and alkaloids, and they were mainly isolated from ten coral families, Ellisellidae, Gorgoniidae, Briareidae, Plexauridae, Anthothelidae, Alcyoniidae, Clavularidae, Tubiporidae, Nephtheidae and Dendrophyllidae to the best of our knowledge. In addition, their organism species, structure composition and biological activity were also discussed in the form of a chart in this essay.


2020 ◽  
Author(s):  
Parthiban Brindha Devi ◽  
Ridhanya Jeyaseelan

Marine fungi are species of fungi which live in estuaries environment and marine environment. These species are found in common habitat. Marine fungi are rich in antimicrobial compounds such as anthrones, cephalosporins, peptides, steroids. These compounds which are derived mainly focused in the area of anti-inflammatory, anti-oxidant, anti-fungal, anti-microbial, anti-fouling activity. Bioactive terpene compounds are produced by marine fungi and marine derived fungi can produce sclerotides, trichoderins. Marine fungi have become the richest sources of biologically active metabolites and structurally novel in the marine environment. In a recent study the marine derived fungi dichotomomyces cejpii exhibits activity towards cannabinoid which is used to treat alzheimer dementia. Aspergillus unguis showed significant acetyl cholinesterase besides its anti-oxidant activity. These acts as a promising intent for discovery of pharmaceutically important metabolites like alkaloids, peptides. Computational (in silico) strategies have been developed and broadly applied to pharmacology advancement and testing. This review summarizes the bioactive compounds derived from marine fungi in accordance with the sources and their biological activities.


Planta Medica ◽  
2017 ◽  
Vol 84 (09/10) ◽  
pp. 558-567 ◽  
Author(s):  
Suelem Ramalho ◽  
Meri Pinto ◽  
Douglas Ferreira ◽  
Vanderlan Bolzani

AbstractA comprehensive overview of natural orbitides isolated from Euphorbiaceae species and their most relevant biological activities are presented. Euphorbiaceae is a large and diverse family, which comprises about 300 genera, and is known as an important source of medicines and toxins. Several classes of secondary metabolites have been described for this taxon, however, orbitides have been broadly reported in Jatropha and Croton genera. Additionally, the latex is documented as the main source of orbitides in this family. Based on their structural and functional diversity, orbitides present a large variety of biological activities described as cytotoxicity, antimalarial, antibacterial, antifungal, enzymatic inhibition, and immunosuppressive, although the mechanism of action still needs to be further investigated. In recent years, the discovery of bioactive cyclic peptides from different sources has grown exponentially, making them promising molecules in the search for new drug leads. This review also highlights the attempts made by many researchers to organize the orbitides nomenclature and amino acid numbering, as well the important progress recently achieved in the biosynthetic study area.


2017 ◽  
pp. 121-127
Author(s):  
Надежда (Nadezhda) Сергеевна (Sergeevna) Лыскова (Lyskova) ◽  
Юлия (Iuliia) Генриховна (Genrikhovna) Базарнова (Bazarnova) ◽  
Игорь (Igor') Вадимович (Vadimovic) Кручина-Богданов (Kruchina-Bogdanov )

In the modern society value of many biological resources remains underestimated. Lichens are one of the unique poorly studied bioresources. These are amazing organisms, formed by symbiosis of algae and fungus. Due to this combination, lichens have a number of unique properties.In this article the results of study the composition of biologically active secondary lichen metabolites of the Usnea barbata lichen. Antioxidant activity and antimicrobial properties of dry lichen extract against bacteria Bac. Subtilis. The conditions for extraction of biologically active metabolites using solvent systems such as water, water-ethanol mixtures with ethanol content of 40 and 70%, 1,4-dioxane and a mixture of 1,4-dioxane and water (1: 1) were selected. With use of the modern analytical methods, the composition of secondary metabolites in the extracts was studied. By the method of spectroscopy in the UV and visible region of the spectrum to determine the content usnic acid, which is 16,2 (solvent - water) to 60,0 (1,4-dioxane) mg/100 ml of extract.It is shown that the dioxane extract has pronounced atioxidant properties. The active substances (in terms of usnic acid) of the dry extract of lichen Usnea barbata are able to inhibit the growth of bacteria Bac. Subtilis.


Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, have stood out as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention along years. They are widespread in all continents, and several structurally unique compounds have been identified from species of this genus. Terpenes, mainly sesterterpenoids, represent the great majority of secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have shown a variety of biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial and anti-inflammatory activities, have been isolated and structurally characterized. This work brings an overview of Phorbas secondary metabolites reported since the first study published in 1993 until 2020, and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document