scholarly journals Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy

Medicina ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 24 ◽  
Author(s):  
Bogdan Ionel Tamba ◽  
Gabriela Dumitrita Stanciu ◽  
Cristina Mariana Urîtu ◽  
Elena Rezus ◽  
Raluca Stefanescu ◽  
...  

Cannabis has been used in pain management since 2900 BC. In the 20th century, synthetic cannabinoids began to emerge, thus opening the way for improved efficacy. The search for new forms of synthetic cannabinoids continues and, as such, the aim of this review is to provide a comprehensive tool for the research and development of this promising class of drugs. Methods for the in vitro assessment of cytotoxic, mutagenic or developmental effects are presented, followed by the main in vivo pain models used in cannabis research and the results yielded by different types of administration (systemic versus intrathecal versus inhalation). Animal models designed for assessing side-effects and long-term uses are also discussed. In the second part of this review, pharmacokinetic and pharmacodynamic studies of synthetic cannabinoid biodistribution, together with liquid chromatography–mass spectrometric identification of synthetic cannabinoids in biological fluids from rodents to humans are presented. Last, but not least, different strategies for improving the solubility and physicochemical stability of synthetic cannabinoids and their potential impact on pain management are discussed. In conclusion, synthetic cannabinoids are one of the most promising classes of drugs in pain medicine, and preclinical research should focus on identifying new and improved alternatives for a better clinical and preclinical outcome.

2019 ◽  
Vol 25 (28) ◽  
pp. 3020-3027 ◽  
Author(s):  
Mir W. Sekandarzad ◽  
Chris Doornebal ◽  
Markus W. Hollmann

: Opioids remain the standard of care in the provision of analgesia in the patient undergoing cancer surgery preoperatively. : The effects of opioids on tumor growth and metastasis have been discussed for many years. In recent years their use as part of the perioperative pain management bundle in the patients undergoing cancer surgery has been thought to promote cancer recurrence and metastasis. : This narrative review highlights earlier and more recent in vitro, in vivo and human retrospective studies that yield conflicting results as to the immune-modulatory effects of morphine on tumor biology. The article examines and explains the discrepancies with regards to the seemingly opposite results of morphine in the tumor milieu. The results of both, earlier studies that demonstrated procarcinogenic effects versus the data of more recent refined rodent studies that yielded neutral or even anti-carcinogenic effects are presented here. : Until the results of prospective randomized controlled trials are available to clarify this important question, it is currently not warranted to support opiophobia and opioids continue to constitute a pivotal role in the pain management of cancer patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Lígia N. M. Ribeiro ◽  
Ana C. S. Alcântara ◽  
Gustavo H. Rodrigues da Silva ◽  
Michelle Franz-Montan ◽  
Silvia V. G. Nista ◽  
...  

The use of biomaterials composed of organic pristine components has been successfully described in several purposes, such as tissue engineering and drug delivery. Drug delivery systems (DDS) have shown several advantages over traditional drug therapy, such as greater therapeutic efficacy, prolonged delivery profile, and reduced drug toxicity, as evidenced by in vitro and in vivo studies as well as clinical trials. Despite that, there is no perfect delivery carrier, and issues such as undesirable viscosity and physicochemical stability or inability to efficiently encapsulate hydrophilic/hydrophobic molecules still persist, limiting DDS applications. To overcome that, biohybrid systems, originating from the synergistic assembly of polymers and other organic materials such as proteins and lipids, have recently been described, yielding molecularly planned biohybrid systems that are able to optimize structures to easily interact with the targets. This work revised the biohybrid DDS clarifying their advantages, limitations, and future perspectives in an attempt to contribute to further research of innovative and safe biohybrid polymer-based system as biomaterials for the sustained release of active molecules.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi216
Author(s):  
Melanie Schoof ◽  
Carolin Göbel ◽  
Dörthe Holdhof ◽  
Sina Al-Kershi ◽  
Ulrich Schüller

Abstract DNA methylation based classification of brain tumors has revealed a high heterogeneity between tumors and led to the description of multiple distinct subclasses. The increasing subdivision of tumors can help to understand molecular mechanisms of tumor development and to improve therapy if appropriate model systems for preclinical research are available. Multiple recent publications have described a subgroup of pediatric glioblastoma which is clearly separable from other pediatric and adult glioblastoma in its DNA methylation profile (GBM MYCN). Many cases in this group are driven by MYCN amplifications and harbor TP53 mutations. These tumors almost exclusively occur in children and were further described as highly aggressive with a median overall survival of only 14 months. In order to further investigate the biology and treatment options of these tumors, we generated hGFAP-cre::TP53 Fl/Fl ::lsl-MYCN mice. These mice carry a loss of TP53 and show aberrant MYCN expression in neural precursors of the central nervous system. The animals develop large forebrain tumors within the first 80 days of life with 100 % penetrance. These tumors resemble human GBM MYCN tumors histologically and are sensitive to AURKA and ATR inhibitors in vitro. We believe that further characterization of the model and in vivo treatment studies will pave the way to improve treatment of patients with these highly aggressive tumors.


2021 ◽  
Vol 30 (03) ◽  
pp. 222-229
Author(s):  
Matthias Hackl ◽  
Elisabeth Semmelrock ◽  
Johannes Grillari

AbstractMicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.


2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2020 ◽  
Vol 10 (4) ◽  
pp. 490-501
Author(s):  
Mozhgan Jahani ◽  
Davood Rezazadeh ◽  
Parisa Mohammadi ◽  
Amir Abdolmaleki ◽  
Amir Norooznezhad ◽  
...  

Blood vessel development is one of the most prominent steps in regenerative medicine due tothe restoration of blood flow to the ischemic tissues and providing the rapid vascularizationin clinical-sized tissue-engineered grafts. However, currently tissue engineering technique isrestricted because of the inadequate in vitro/in vivo tissue vascularization. Some challenges likeas transportation in large scale, distribution of the nutrients and poor oxygen diffusion limit theprogression of vessels in smaller than clinically relevant dimensions as well in vivo integration.In this regard, the scholars attempted to promote the vascularization process relied on the stemcells (SCs), growth factors as well as exosomes and interactions of biomaterials with all of themto enable the emergence of ideal microenvironment which is needed for treatment of unhealthyorgans or tissue regeneration and formation of new blood vessels. Thus, in the present reviewwe aim to describe these approaches, advances, obstacles and opportunities as well as theirapplication in regeneration of heart as a prominent angiogenesis-dependent organ.


2016 ◽  
Vol 94 (7) ◽  
pp. 788-796 ◽  
Author(s):  
Bhawana Gupta ◽  
Sabyasachi Chakraborty ◽  
Soumya Saha ◽  
Sunita Gulabsingh Chandel ◽  
Atul Kumar Baranwal ◽  
...  

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


Author(s):  
Catherine Karbasiafshar ◽  
Frank W. Sellke ◽  
M. Ruhul Abid

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery, However, recent revolutionary developments and insight into the potential of 'personalizing' EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies, and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Mónica Villarreal-Salazar ◽  
Astrid Brull ◽  
Gisela Nogales-Gadea ◽  
Antoni L. Andreu ◽  
Miguel A. Martín ◽  
...  

McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute “crises” of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient’s phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.


Sign in / Sign up

Export Citation Format

Share Document