scholarly journals Effects of Field Position on Fluid Balance and Electrolyte Losses in Collegiate Women’s Soccer Players

Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 502
Author(s):  
Haoyan Wang ◽  
Kate S. Early ◽  
Bailey M. Theall ◽  
Adam C. Lowe ◽  
Nathan P. Lemoine ◽  
...  

Background and objectives: Research investigating hydration strategies specialized for women’s soccer players is limited, despite the growth in the sport. The purpose of this study was to determine the effects of fluid balance and electrolyte losses in collegiate women’s soccer players. Materials and Methods: Eighteen NCAA Division I women’s soccer players were recruited (age: 19.2 ± 1.0 yr; weight: 68.5 ± 9.0 kg, and height: 168.4 ± 6.7 cm; mean ± SD), including: 3 forwards (FW), 7 mid-fielders (MD), 5 defenders (DF), and 3 goalkeepers (GK). Players practiced outdoor during spring off-season training camp for a total 14 practices (WBGT: 18.3 ± 3.1 °C). The main outcome measures included body mass change (BMC), sweat rate, urine and sweat electrolyte concentrations, and fluid intake. Results: Results were analyzed for comparison between low (LOW; 16.2 ± 2.6° C, n = 7) and moderate risk environments for hyperthermia (MOD; 20.5 ± 1.5 °C, n = 7) as well as by field position. The majority (54%) of players were in a hypohydrated state prior to practice. Overall, 26.7% of players had a %BMC greater than 0%, 71.4% of players had a %BMC less than −2%, and 1.9% of players had a %BMC greater than −2% (all MD position). Mean %BMC and sweat rate in all environmental conditions were −0.4 ± 0.4 kg (−0.5 ± 0.6% body mass) and 1.03 ± 0.21 mg·cm−2·min−1, respectively. In the MOD environment, players exhibited a greater sweat rate (1.07 ± 0.22 mg·cm−2·min−1) compared to LOW (0.99 ± 0.22 mg·cm−2·min−1; p = 0.02). By position, DF had a greater total fluid intake and a lower %BMC compared to FW, MD, and GK (all p < 0.001). FW had a greater sweat sodium (Na+) (51.4 ± 9.8 mmol·L−1), whereas GK had the lowest sweat sodium (Na+) (30.9 ± 3.9 mmol·L−1). Conclusions: Hydration strategies should target pre-practice to ensure players are adequately hydrated. Environments deemed to be of moderate risk of hyperthermia significantly elevated the sweat rate but did not influence fluid intake and hydration status compared to low-risk environments. Given the differences in fluid balance and sweat responses, recommendations should be issued relative to soccer position.

2011 ◽  
Vol 21 (6) ◽  
pp. 492-500 ◽  
Author(s):  
Matthew J.E. Lott ◽  
Stuart D.R. Galloway

This study assessed fluid balance, sodium losses, and effort intensity during indoor tennis match play (17 ± 2 °C, 42% ± 9% relative humidity) over a mean match duration of 68.1 ± 12.8 min in 16 male tennis players. Ad libitum fluid intake was recorded throughout the match. Sweat loss from change in nude body mass; sweat electrolyte content from patches applied to the forearm, calf, and thigh, and back of each player; and electrolyte balance derived from sweat, urine, and daily food-intake analysis were measured. Effort intensity was assessed from on-court heart rate compared with data obtained during a maximal treadmill test. Sweat rate (M ± SD) was 1.1 ± 0.4 L/hr, and fluid-ingestion rate was 1.0 ± 0.6 L/hr (replacing 93% ± 47% of fluid lost), resulting in only a small mean loss in body mass of 0.15% ± 0.74%. Large interindividual variabilities in sweat rate (range 0.3–2.0 L/hr) and fluid intake (range 0.31–2.52 L/hr) were noted. Whole-body sweat sodium concentration was 38 ± 12 mmol/L, and total sodium losses during match play were 1.1 ± 0.4 g (range 0.5–1.8 g). Daily sodium intake was 2.8 ± 1.1 g. Indoor match play largely consisted of low-intensity exercise below ventilatory threshold (mean match heart rate was 138 ± 24 beats/min). This study shows that in moderate indoor temperature conditions players ingest sufficient fluid to replace sweat losses. However, the wide range in data obtained highlights the need for individualized fluid-replacement guidance.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 401
Author(s):  
Ian Rollo ◽  
Rebecca K. Randell ◽  
Lindsay Baker ◽  
Javier Yanguas Leyes ◽  
Daniel Medina Leal ◽  
...  

Hypohydration increases physiological strain and reduces physical and technical soccer performance, but there are limited data on how fluid balance responses change between different types of sessions in professional players. This study investigated sweat and fluid/carbohydrate intake responses in elite male professional soccer players training at low and high intensities in cool and hot environments. Fluid/sodium (Na+) losses and ad-libitum carbohydrate/fluid intake of fourteen elite male soccer players were measured on four occasions: cool (wet bulb globe temperature (WBGT): 15 ± 7 °C, 66 ± 6% relative humidity (RH)) low intensity (rating of perceived exertion (RPE) 2–4, m·min−1 40–46) (CL); cool high intensity (RPE 6–8, m·min−1 82–86) (CH); hot (29 ± 1 °C, 52 ± 7% RH) low intensity (HL); hot high intensity (HH). Exercise involved 65 ± 5 min of soccer-specific training. Before and after exercise, players were weighed in minimal clothing. During training, players had ad libitum access to carbohydrate beverages and water. Sweat [Na+] (mmol·L−1), which was measured by absorbent patches positioned on the thigh, was no different between conditions, CL: 35 ± 9, CH: 38 ± 8, HL: 34 ± 70.17, HH: 38 ± 8 (p = 0.475). Exercise intensity and environmental condition significantly influenced sweat rates (L·h−1), CL: 0.55 ± 0.20, CH: 0.98 ± 0.21, HL: 0.81 ± 0.17, HH: 1.43 ± 0.23 (p =0.001), and percentage dehydration (p < 0.001). Fluid intake was significantly associated with sweat rate (p = 0.019), with no players experiencing hypohydration > 2% of pre-exercise body mass. Carbohydrate intake varied between players (range 0–38 g·h−1), with no difference between conditions. These descriptive data gathered on elite professional players highlight the variation in the hydration status, sweat rate, sweat Na+ losses, and carbohydrate intake in response to training in cool and hot environments and at low and high exercise intensities.


2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


2014 ◽  
Vol 9 (4) ◽  
pp. 689-694 ◽  
Author(s):  
Javier Abian-Vicen ◽  
Adrián Castanedo ◽  
Pablo Abian ◽  
Cristina Gonzalez-Millan ◽  
Juan José Salinero ◽  
...  

The aim was to analyze the influence of competitive round on muscle strength, body-fluid balance, and renal function in elite badminton players during a real competition. Body mass, jump height during a countermovement jump, handgrip force, and urine samples were obtained from 13 elite badminton players (6 men and 7 women) before and after the 2nd-round and quarterfinal matches of the national Spanish badminton championship. Sweat rate was determined by using prematch-to-postmatch body-mass change and by weighing individually labeled fluid bottles. Sweat rates were 1.04 ± 0.62 and 0.98 ± 0.43 L/h, while rehydration rate was 0.69 ± 0.26 and 0.91 ± 0.52 L/h for the 2nd round and quarterfinals, respectively. Thus, dehydration was 0.47% ± 1.03% after the 2nd round and 0.23% ± 0.43% after the quarterfinals. There were no differences in prematch-to-postmatch jump height, but jump height was reduced from 37.51 ± 8.83 cm after the 2nd-round game to 34.82 ± 7.37 cm after the quarterfinals (P < .05). No significant differences were found in handgrip force when comparing prepost matches or rounds, although there were significant differences between dominant and nondominant hands (P < .05). The succession of rounds caused the appearance of proteinuria, hematuria, glycosuria, and higher nitrite and ketone concentrations in urine. Rehydration patterns during a real badminton competition were effective to prevent dehydration. A badminton match did not affect jump height or handgrip force, but jump height was progressively reduced by the competitive round. Badminton players’ renal responses reflected diminished renal flux due to the high-intensity nature of this racket sport.


2010 ◽  
Vol 35 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Matthew S. Palmer ◽  
Heather M. Logan ◽  
Lawrence L. Spriet

This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate–electrolyte solution (CES) to drink during practices decreased fluid intake or affected other hydration and (or) sweat measures. All testing was conducted on elite players of an Ontario Hockey League team (±SE; mean age, 17.6 ± 0.3 years; mean height, 182.9 ± 1.4 cm; mean body mass, 83.0 ± 1.7 kg). Players were studied 3 times over the course of 6 weekly on-ice practices (±SE; mean playing time, 1.58 ± 0.07 h; mean temperature, 11.4 ± 0.8 °C; mean relative humidity, 52% ± 3%). There was strong repeatability of the measured hydration and sweat parameters between 2 similar on-ice practices when players drank only water. Limiting the players to drinking only a CES (as opposed to water) did not decrease fluid intake during practice (±SE; mean CES intake, 0.72 ± 0.07 L·h–1 vs. mean water intake, 0.82 ± 0.08 L·h–1) or affect sweat rate (1.5 ± 0.1 L·h–1 vs. 1.5 ± 0.1 L·h–1), sweat sodium concentration (72.4 ± 5.6 mmol·L–1 vs. 73.0 ± 4.4 mmol·L–1), or percent body mass loss (1.1% ± 0.2% vs. 0.9% ± 0.2%). Drinking a CES also improved sodium balance (–2.1 ± 0.2 g·h–1 vs. –2.6 ± 0.3 g·h–1) and provided the players with a significant carbohydrate (43 ± 4 g·h–1 vs. 0 ± 0 g·h–1) during practice. In summary, a single field sweat test during similar on-ice hockey practices in male junior hockey players is sufficient to evaluate fluid and electrolyte balance. Also, a CES does not affect voluntary fluid intake during practice, compared with water, in these players. The CES provided some salt to offset the salt lost in sweat, and carbohydrate, which may help maintain physical and mental performance in the later stages of practice.


2008 ◽  
Vol 18 (5) ◽  
pp. 457-472 ◽  
Author(s):  
Ronald J. Maughan ◽  
Susan M. Shirreffs

Athletes are encouraged to begin exercise well hydrated and to consume sufficient amounts of appropriate fluids during exercise to limit water and salt deficits. Available evidence suggests that many athletes begin exercise already dehydrated to some degree, and although most fail to drink enough to match sweat losses, some drink too much and a few develop hyponatremia. Some simple advice can help athletes assess their hydration status and develop a personalized hydration strategy that takes account of exercise, environment, and individual needs. Preexercise hydration status can be assessed from urine frequency and volume, with additional information from urine color, specific gravity, or osmolality. Change in hydration during exercise can be estimated from the change in body mass that occurs during a bout of exercise. Sweat rate can be estimated if fluid intake and urinary losses are also measured. Sweat salt losses can be determined by collection and analysis of sweat samples, but athletes losing large amounts of salt are likely to be aware of the taste of salt in sweat and the development of salt crusts on skin and clothing where sweat has evaporated. An appropriate drinking strategy will take account of preexercise hydration status and of fluid, electrolyte, and substrate needs before, during, and after a period of exercise. Strategies will vary greatly between individuals and will also be influenced by environmental conditions, competition regulations, and other factors.


2015 ◽  
Vol 40 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Adora M.W. Yau ◽  
Andrew D. Moss ◽  
Lewis John James ◽  
William Gilmore ◽  
Jason J. Ashworth ◽  
...  

Angiotensin converting enzyme (ACE) and bradykinin receptor B2 (B2R) genetic variation may affect thirst because of effects on angiotensin II production and bradykinin activity, respectively. To examine this, 45 healthy Caucasian men completed 60 min of cycle exercise at 62% ± 5% peak oxygen uptake in a room heated to 30.5 ± 0.3 °C with ad libitum fluid intake. Blood samples were collected pre-, mid-, and immediately post-cycle. Fluid intake, body mass loss (BML), sweat loss (determined via changes in body mass and fluid intake), and thirst sensation were recorded. All participants were genotyped for the ACE insert fragment (I) and the B2R insert sequence (P). Participants were homozygous for the wild-type allele (WW or MM), heterozygous (WI or MP) or homozygous for the insert (II or PP). No differences between genotype groups were found in mean (±SD) voluntary fluid intake (WW: 613 ± 388, WI: 753 ± 385, II: 862 ± 421 mL, p = 0.31; MM: 599 ± 322, MP: 745 ± 374, PP: 870 ± 459 mL, p = 0.20), percentage BML or any other fluid balance variables for both the ACE and B2R genes, respectively. Mean thirst perception in the B2R PP group, however, was higher (p < 0.05) than both MM and MP at 30, 45, and 60 min. In conclusion, the results of this study suggest that voluntary fluid intake and fluid balance in healthy men performing 60 min of moderate-intensity exercise in the heat are not predominantly influenced by ACE or B2R genetic variation.


2020 ◽  
Vol 29 (1) ◽  
pp. 105-120
Author(s):  
Yvonne Voss ◽  
Christoph Raschka

The aim of the study is to improve talent search, training methodology and injury prevention in women’s soccer. It analyses to what extent there are physical differences between top female soccer players (S) and a control group of sporty females (ff = fitness females). Furthermore, it examines whether differences in injuries can be identified between individual game positions (defense, midfield, forward, goalkeeper) and/or somatotypes. For this purpose, the anthropometric measurements of 233 top female soccer players (Ø 22 years old) and 40 fitness females (Ø 25 years old) who had been doing regular strength/endurance training twice a week for 2 years were statistically recorded, evaluated and used for determination of constitutional types according to Heath and Carter, Conrad and Knussmann and the AKS index according to Tittel and Wutscherk. In addition, body fat percentage according to Siri and the body mass index (BMI) were calculated. For the sample of soccer players, the types of injuries (categories: cruciate ligament, other knee, ankle joint/foot, shoulder/torso/hip, other injuries) and injury frequency according to the game positions, somatotypes and various body mass indices were compared statistically. There were significant differences between the anthropometric measurements of pelvic circumference (S: 81.2 ± 4.3cm; ff: 95.7 ± 7.7 cm; p ≤ 0.001) and maximum femoral circumference (S: 54.1 ± 3.1 cm; ff: 51.1 ± 4.4 cm; p ≤ 0.001). In terms of kinanthropometry, there were significant differences in the somatochart according to Heath and Carter [9] (S: 4/5/2; ff: 6/5/3), in the checkerboard pattern according to Conrad [3] (S: leptomorphic/hyperplastic; ff: metromorphic/hyperplastic) and in body fat percentage (S: 18.1 ± 2.1%; F: 25.0 ± 4.3%; p ≤ 0.001). The goalkeepers differed significantly from the field players with higher heights, lengths, sizes, higher body weight and a higher proportion of other injuries (e.g. hand, arm and head injuries). In constitutional terms, they differed only slightly from the field players. These appeared homogeneous in terms of body structure and injury mechanisms.


2014 ◽  
Vol 9 (3) ◽  
pp. 515-521 ◽  
Author(s):  
Thomas A. Haugen ◽  
Espen Tønnessen ◽  
Erlend Hem ◽  
Svein Leirstein ◽  
Stephen Seiler

Purpose:To quantify VO2max among female competitive soccer players as a function of performance level, field position, and age. In addition, the evolution of VO2max among world-class players over an 18-y period was quantified.Methods:Female players (N = 199, 22 ± 4 y, 63 ± 6 kg, height 169 ± 6 cm), including an Olympic winning squad, were tested for VO2max at the Norwegian Olympic Training Center between 1989 and 2007.Results:National-team players had 5% higher VO2max than 1st-division players (P = .042, d = 0.4), 13% higher than 2nd-division players (P < .001, d = 1.2), and 9% higher than junior players (P = .005, d = 1.0). Midfielders had 8% higher VO2max than goalkeepers (P = .048, d = 1.1). No significant differences were observed across outfield players or different age categories. There was a trend toward lower relative VO2max across time epochs.Conclusions:This study demonstrated that VO2max varies across playing-standard level in women’s soccer. No significant differences in VO2max were observed across outfield positions and age categories. Over time, there has been a slight negative development in VO2max among elite Norwegian soccer players.


2009 ◽  
Vol 19 (6) ◽  
pp. 598-606 ◽  
Author(s):  
Ronald J. Maughan ◽  
Lisa A. Dargavel ◽  
Rachael Hares ◽  
Susan M. Shirreffs

This study investigated fluid and electrolyte balance in well-trained male and female swimmers during 2 training sessions. Participants were 17 nationally ranked swimmers measured during a period of intensive training. Sweat loss was assessed from changes in body mass after correction for fluid intake and urine collection. Sweat composition was measured from waterproof absorbent patches applied at 4 skin sites. Air and pool-water temperatures were 36 °C and 27.4 °C, respectively. Training lasted 105 min in each session. All measured variables were similar on the 2 testing days. Mean sweat-volume loss was 548 ± 243 ml, and mean sweat rate was 0.31 ± 0.1 L/hr. Mean fluid intake was 489 ± 270 ml. Mean body-mass loss was 0.10 ± 0.50 kg, equivalent to 0.1% ± 0.7% dehydration. Mean pretraining urine osmolality was 662 ± 222 mOsm/kg, which was negatively associated with both mean drink volume consumed (p = .044, r2 = .244) and mean urine volume produced during training (p = .002, r2 = .468). Mean sweat Na+, K+, and Cl− concentrations (mmol/L) were 43 ± 14, 4 ± 1, and 31± 9, respectively; values were not different between males and females and were not different between days except for a marginal difference in K+ concentration. The average swimmer remained hydrated during the session, and calculated sweat rates were similar to those in previous aquatic studies.


Sign in / Sign up

Export Citation Format

Share Document