scholarly journals Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 207
Author(s):  
Tawheed Hashem ◽  
Elvia P. Valadez Sanchez ◽  
Evgenia Bogdanova ◽  
Anna Ugodchikova ◽  
Alaa Mohamed ◽  
...  

In the context of thin film nanotechnologies, metal-organic frameworks (MOFs) are currently intensively explored in the context of both, novel applications and as alternatives to existing materials. When it comes to applications under relatively harsh conditions, in several cases it has been noticed that the stability of MOF thin films deviates from the corresponding standard, powdery form of MOFs. Here, we subjected SURMOFs, surface-anchored MOF thin films, fabricated using layer-by layer methods, to a thorough characterization after exposure to different harsh aqueous environments. The stability of three prototypal SURMOFs, HKUST-1, ZIF-8, and UiO-66-NH2 was systematically investigated in acidic, neutral, and basic environments using X-ray diffraction and electron microscopy. While HKUST-1 films were rather unstable in aqueous media, ZIF-8 SURMOFs were preserved in alkaline environments when exposed for short periods of time, but in apparent contrast to results reported in the literature for the corresponding bulk powders- not stable in neutral and acidic environments. UiO-66-NH2 SURMOFs were found to be stable over a large window of pH values.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Julia Marí-Guaita ◽  
Amal Bouich ◽  
Bernabé Marí

In this work, FAPbI3 thin films with different antisolvents (toluene, diethyl ether and chlorobenzene) were successfully elaborated by the spin coating technique to study the influence of the different antisolvents in the films. The crystal structure, surface morphology and optical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) photoluminescence and UV–visible spectrometry. According to XRD, the crystalline structure of FAPbI3 was found in the orientation of the (110) plane, and it is observed that the type of antisolvent content in the absorber layer plays an important role in the growth and stabilization of the film. Here, chlorobenzene leads to a smooth and homogenous surface, a large grain size and a pinhole-free perovskite film. Additionally, the optical analysis revealed that the band gap is in the range from 1.55 to 1.57 eV. Furthermore, in an approximately 60% humidity environment and after two weeks, the stability and absorption of FaPbI3 showed low degradation.


2018 ◽  
Vol 83 (6) ◽  
pp. 745-757 ◽  
Author(s):  
Ivana Milenkovic ◽  
Ksenija Radotic ◽  
Branko Matovic ◽  
Marija Prekajski ◽  
Ljiljana Zivkovic ◽  
...  

Cerium oxide (CeO2) nanoparticles (CONPs) are interesting biomaterials with various applications in biomedicine, cosmetics and the pharmaceutical industry, but with limited practical application because of their low stability in aqueous media. The aim of this study was to obtain CONPs with increased stability by coating the particles. Microbial exopolysaccharides (levan, pullulan) and glucose were used to prepare CONPs under different synthesis conditions. Coating was attempted by adding the carbohydrates during (direct coating) or after (subsequent coating) the synthesis of CONPs. The obtained nanoparticles were characterized by X-Ray diffraction analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The suspension stability of the uncoated and coated CONPs in aqueous media was evaluated by measuring the hydrodynamic size, zeta potential and turbidity. The FT-IR spectra revealed the differences between coated CONPs and showed the success of subsequent coating with carbohydrates. Coating with carbohydrates improved the stability the CONP suspension by decreasing the size of aggregated particles. The suspensions of levan- and glucose-coated CONPs had the best stability. In this study, CONPs were prepared using non-toxic materials, which were completely environmentally friendly. The obtained results open new horizons for CONP synthesis, improving their biological applications.


2011 ◽  
Vol 1326 ◽  
Author(s):  
C. Cerclier ◽  
C. Moreau ◽  
A. Guyomard-Lack ◽  
E. Bonnin ◽  
H. Bizot ◽  
...  

ABSTRACTStructural colors were obtained by the deposition of plant cell walls biopolymers films on reflective support. Multilayered xyloglucan(XG)/cellulose nanocrystals(CN) thin films were obtained by spin-assisted layer-by-layer assembly while arabinoxylan (AX) thin films were elaborated via the spin-coating of AX/melamine formaldehyde resin followed by a cross-linking step. The effects of aqueous solutions on the stability of the structural colors were evaluated. The films were subsequently used to detect cellulase and xylanase activities by the change in the colors due to the film degradation. This enzymatic assay method appeared to be about 150 more sensitive that a standard method. Moreover due its simplicity, the method could be used to detect other biomass-hydrolyzing enzymes and more generally for other heterocatalytic degradations of solid polymer layers.


2020 ◽  
Vol 12 (45) ◽  
pp. 50784-50792
Author(s):  
Hiroaki Ohara ◽  
Shunsuke Yamamoto ◽  
Daiki Kuzuhara ◽  
Tomoyuki Koganezawa ◽  
Hidetoshi Oikawa ◽  
...  

2000 ◽  
Vol 637 ◽  
Author(s):  
F. Niu ◽  
A.R. Teren ◽  
B.H. Hoerman ◽  
B.W. Wessels

AbstractEpitaxial ferroelectric BaTiO3 thin films have been developed as a material for microphotonics. Efforts have been directed toward developing these materials for thin film electro-optic modulators. Films were deposited by metalorganic chemical vapor deposition (MOCVD) on both MgO and silicon substrates. The electro-optic properties of the thin films were measured. For BaTiO3 thin films grown on (100) MgO substrates, the effective electro-optic coefficient, reff depended on the magnitude and direction of the electric field. Coefficients as high as 260 pm/V have been measured. Investigation of BaTiO3 films on silicon has been undertaken. Epitaxial BaTiO3 thin films were deposited by MOCVD on (100) MgO layers grown on silicon (100) substrates by metal-organic molecular beam epitaxy (MOMBE). The MgO serves as the low index optical cladding layer as well as an insulating layer. X-ray diffraction and transmission electron microscopy (TEM) indicated that BaTiO3 was epitaxial with an orientational relation given by BaTiO3 (100)//Si (100) and BaTiO3[011]//Si [011]. Polarization measurements indicated that the BaTiO3 epitaxial films on Si were in the ferroelectric state.


2017 ◽  
Vol 5 (26) ◽  
pp. 13665-13673 ◽  
Author(s):  
Suttipong Wannapaiboon ◽  
Kenji Sumida ◽  
Katharina Dilchert ◽  
Min Tu ◽  
Susumu Kitagawa ◽  
...  

Addition of a modulator in the LPE process enhances MOF thin film properties by boosting their crystallinity, orientation uniformity, and adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document