scholarly journals Electrodialysis Can Lower the Environmental Impact of Hemodialysis

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Ahmed Abarkan ◽  
Nabil Grimi ◽  
Hubert Métayer ◽  
Tarik Sqalli Houssaïni ◽  
Cécile Legallais

The hemodialysis technique, used worldwide for patients with chronic kidney disease, is considered as a treatment with a high economic and ecological impact, especially for water consumption. Getting ultrapure water for the preparation of the dialysate to clean patient’s blood from toxins leads to high volumes of salt-enriched water that directly goes to sewage. The aim of this work is to propose operating conditions for electrodialysis to allow the reuse of reverse osmosis (RO) rejects. We first performed a parametric study to evaluate the influence of different parameters, such as flow rates, initial concentration, and applied voltage on the demineralization rate (DR) and specific energy consumption (SPC) with a NaCl model solution. The optimal conditions for desalination (i.e., a potential of 12 V, and flow rate of 20 L·h−1) were then successfully applied to real samples collected from a dialysis center with total dissolved salts concentration of about 1.4 g/L (conductivity of 2.0 mS·cm−1). We demonstrated that the choice of adequate conductivity targets allowed meeting the physico-chemical requirements to obtain water re-usable for either rehabilitation swimming pool, manual or machine washing of instruments before sterilization or irrigation. Saving this water could contribute in the reduction of the environmental impact of hemodialysis.

2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


1990 ◽  
Vol 22 (12) ◽  
pp. 33-43 ◽  
Author(s):  
Eduardo P. Jordão ◽  
Jorge R. Leitão

In developing countries, as is the case of Brazil, solutions proposed for sewage and sludge treatment and disposal must meet not only public environmental demands and obey proper legal regulations, but also take into account the availability of funds for new investments and operation of existing systems. Brazilian federal regulations allow ocean disposal of sewage and solids, according to certain water quality criteria and specific standards. On the other hand, federal regulations require that submarine outfalls must be studied by means of an Environmental Impact Assessment, and that a Report on the Environmental Impact be produced. Such studies must demonstrate that the site will be protected and that ocean disposal will not impair the environment and the beneficial uses, such as fisihing, recreation, navigation, or propagation of marine life. The State of Rio de Janeiro has monitored its Ipanema Submarine Outfall since 1974, one year prior to going into operation. Present flow is 6m3/sec (140 mgd) of bar-screened domestic sewage. The submarine outfall is a 2.4m diameter concrete pipe, 4.3 km (2.7mi) long, and discharges at a depth of 27m (89ft). The paper presents and discusses existing regulations and data on the seawater monitoring program which is still in practice, having produced more than 90,000 analyses. Discussion covers the period 1974 - 1988, and shows that no adverse ecological impact has been noted on the marine ecosystem.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 449-460 ◽  
Author(s):  
W. Giger ◽  
M. Ahel ◽  
M. Koch ◽  
H. U. Laubscher ◽  
C. Schaffner ◽  
...  

Effluents and sludges from several municipal sewage treatment plants in Switzerland were analyzed for nonylphenol polyethoxylates (NPnEO, n=3-20), nonylphenol mono- and diethoxylate (NPlEO, NP2EO), corresponding nonylphenoxy carboxylic acids (NP1EC, NP2EC) and nonylphenol (NP). These chemicals derive from nonionic surfactants of the NPnEO-type, and specific analitical techniques were used to study their behaviour during mechanical-biological sewage and subsequent sludge treatment. The parent NPnEO-surfactants, with concentrations in raw and mechanically treated sewage from 400-2200 mg/m3, were relatively efficiently removed by the activated sludge treatment. The abundances of the different metabolites varied depending on treatment conditions. The refractory nature of NPl/2EO, NP and NPl/2EC was recognized. Both biotransformations and physico-chemical processes determine the behaviour and fate of nonylphenolic substances in sewage treatment. Nitrilotriacetate (NTA) was found in primary effluents at concentrations between 430 and 1390 mg/m3. The various treatment plants showed different removal efficiencies for NTA depending on the operating conditions. Activated sludge treatment with low sludge loading rates and nitrifying conditions removed NTA with efficiencies between 95 and 99%. High sludge loading caused a decrease in NTA removal efficiencies from 70% to 39%.


2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 810
Author(s):  
Sabrina Sorlini ◽  
Carlo Collivignarelli ◽  
Marco Carnevale Miino ◽  
Francesca Maria Caccamo ◽  
Maria Cristina Collivignarelli

The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L−1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0–0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L−1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm−2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950–1400 mJ cm−2 and higher than 1400 mJ cm−2, respectively.


2018 ◽  
Vol 19 (3) ◽  
pp. 718-724
Author(s):  
Zhenmin Cheng ◽  
Yuansong Wei ◽  
Min Gao ◽  
Junya Zhang ◽  
Liangchang Zhang ◽  
...  

Abstract A novel wastewater treatment and reuse system (WTRS) combining an anaerobic membrane bioreactor (AnMBR) and an aerobic membrane bioreactor (MBR) with the design capacity of 115 L/d was developed for a terrestrial-based controlled ecological life support system (CELSS). Results clearly showed that the WTRS realized mineralization of organic compounds and reservation of nitrogenous nutrient, therefore converting the effluent into replenishment for the hydroponic system. Trace gas emission from the WTRS could meet requirements for the whole CELSS. Compared with physico-chemical processes, the specific consumables consumption of the WTRS was advantageous but its specific energy consumption is still in need of improvement. Results of microbial community analysis were consistent with the running state of the AnMBR and the MBR.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


2017 ◽  
Vol 2 (5) ◽  
pp. 1812-1819 ◽  
Author(s):  
Daniele Costenaro ◽  
Chiara Bisio ◽  
Fabio Carniato ◽  
Sergey L. Safronyuk ◽  
Tatyana V. Kramar ◽  
...  

Author(s):  
Zhihang Song ◽  
Bruce T. Murray ◽  
Bahgat Sammakia

The integration of a simulation-based Artificial Neural Network (ANN) with a Genetic Algorithm (GA) has been explored as a real-time design tool for data center thermal management. The computation time for the ANN-GA approach is significantly smaller compared to a fully CFD-based optimization methodology for predicting data center operating conditions. However, difficulties remain when applying the ANN model for predicting operating conditions for configurations outside of the geometry used for the training set. One potential remedy is to partition the room layout into a finite number of characteristic zones, for which the ANN-GA model readily applies. Here, a multiple hot aisle/cold aisle data center configuration was analyzed using the commercial software FloTHERM. The CFD results are used to characterize the flow rates at the inter-zonal partitions. Based on specific reduced subsets of desired treatment quantities from the CFD results, such as CRAC and server rack air flow rates, the approach was applied for two different CRAC configurations and various levels of CRAC and server rack flow rates. Utilizing the compact inter-zonal boundary conditions, good agreement for the airflow and temperature distributions is achieved between predictions from the CFD computations for the entire room configuration and the reduced order zone-level model for different operating conditions and room layouts.


Sign in / Sign up

Export Citation Format

Share Document