scholarly journals A Comparative Study in the Tribological Behavior of DLC Coatings Deposited by HiPIMS Technology with Positive Pulses

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 174 ◽  
Author(s):  
Jose A. García ◽  
Pedro J. Rivero ◽  
Eneko Barba ◽  
Ivan Fernández ◽  
Jose A. Santiago ◽  
...  

During the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with “positive pulses”. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Adrián Claver ◽  
Emilio Jiménez-Piqué ◽  
José F. Palacio ◽  
Eluxka Almandoz ◽  
Jonathan Fernández de Ara ◽  
...  

Diamond-like carbon (DLC) coatings are very interesting due to their extraordinary properties; their excellent wear resistance, very low friction coefficient, great hardness, high elastic modulus or biocompatibility can be highlighted, as can their multifunctionality. Because of this, over recent decades they have been widely used in tribological applications, improving the performance and the useful life of machining tools in an effective way. However, these coatings have a disadvantage compared to other coatings deposited by commercially available techniques—their resultant adhesion is worse than that of other techniques and limits their industrial applications. In this work, tribological results of a scratch test, wear resistance and nanoindentation of tetrahedral amorphous carbon (ta-C) and tungsten carbide:carbon (WC:C) DLC coatings deposited by means of novel high-power impulse magnetron sputtering (HiPIMS) technology with positive pulses are reported. The coatings were deposited in three different tools steels: K360, vanadis 4 and vancron. These tools’ steels are very interesting because of their great and wide industrial applicability. Experimental results showed excellent tribological properties, such as resistance to wear or adhesion, in the two types of DLC coatings.


2012 ◽  
Vol 184-185 ◽  
pp. 1380-1383
Author(s):  
Yong Ping Niu ◽  
Xiang Yan Li ◽  
Jun Kai Zhang ◽  
Ming Han ◽  
Yong Zhen Zhang

Polybutyl acrylate (PBA) grafted alumina nanoparticles were synthesized. Polytetrafluoroethylene (PTFE) nanocomposites reinforced with PBA grafted nanoparticles were prepared by compression molding. The effects of PBA grafted nanoparticles on the tribological behavior of the PTFE nanocomposites were investigated on a tribometer. The abrasion mechanisms of the PTFE nanocomposites were investigated by scanning electron microscopy (SEM) of the abraded surfaces. The results show that the addition of PBA grafted nanoparticles maintains low friction coefficient and improves the wear resistance of the PTFE nanocomposites.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Y. Yang ◽  
Y. Zhu ◽  
H. Yang

Abstract Selective laser melting (SLM) is a rapidly developing metal additive manufacturing technology. SLM process parameters have a direct impact on the microstructure of parts, which further affect wear behaviors. Increasing the wear resistance by tailoring process parameters, instead of postprocessing, is crucial for enhancing surface properties of the SLM-fabricated parts with complicated structures. In this study, 316L stainless steel samples were fabricated using different energy densities by varying hatch spacing and scanning speed. The relative density and hardness were measured, and the microstructures were examined. The wear resistance was evaluated by performing scratch tests. Results show that high hardness was found in the bottom region of the samples by small hatch spacings and the highest hardness of 302.8 ± 4.3 HV was measured in the sample by a hatch spacing of 10 μm. With the increase of energy density from 178 to 533 J/mm3 by reducing hatch spacing, the fraction of cellular structures decreases and columnar structures are more likely to be aligned in a relatively constant tilted angle from the build direction, which significantly improve the ability to resist slipping and deformation, indicated by 90.1%, 45.0%, and 15.7% reductions in wear rates under 1, 3, and 5 N, respectively. With the increase of energy density from 182 to 545 J/mm3 by reducing the scanning speed, the number of cellular structures increases but pores also form, which negatively affects wear resistance.


2010 ◽  
Vol 204 (21-22) ◽  
pp. 3451-3458 ◽  
Author(s):  
A.P. Carapeto ◽  
A.P. Serro ◽  
B.M.F. Nunes ◽  
M.C.L. Martins ◽  
S. Todorovic ◽  
...  

2010 ◽  
Vol 33 ◽  
pp. 483-486
Author(s):  
Hai Dong Yang ◽  
Xi Quan Xia ◽  
Zhen Hua Qing

The method of “cutting instead of grinding” on hardened steel is always attractive to engineers. To gain this aim the tool material must first be found. C3N4 is a new kind of super hard material and has comparable properties with diamond in high hardness, wear-resistance, low friction coefficient and thermal conductivity. A number of dry-cutting tests were carried out by C3N4-film coated tool on hardened steel, proved the coating tool is suitable for hard dry cutting.


2003 ◽  
Vol 788 ◽  
Author(s):  
V. Spassov ◽  
A. Savan ◽  
A. R. Phani ◽  
M. Stueber ◽  
H. Haefke

ABSTRACTNowadays the demands placed upon the tooling in processes such as cutting, drilling, milling, stamping, bending, etc. are constantly growing and restrictive. On one hand, productivity, cost efficiency and quality all require high-speed processes to be developed. On the other hand, environmental safety requires very little or no lubricant to be used (dry cutting or minimized spray-lubrication). When combined, these two considerations mean: the tool should wear very little, withstand high temperatures and the friction between the tool and the work piece should be minimized. An apparent approach to simultaneously satisfying such requirements is coating the tools with self-lubricating hard coatings. Quaternary TiAlCN is a rapidly developing hard coating suitable for a number of cutting applications. The well-known wear-resistant coating TiN has been demonstrated to have improved high-temperature oxidation resistance when aluminum is included, i.e. TiAl N. Addition of yet a fourth element, carbon, has the primary effect of lowering the high friction coefficient occurring between the ceramic coating and steel. The high hardness, toughness, heat resistance and low friction coefficient of TiAlCN make it the ideal candidate for applications such as milling, hobbing, tapping, stamping and punching. MoS2 is a well-known solid lubricant widely used as tribological coatings, especially for applications working in vacuum or dry environment. Combining the wear resistance of the quaternary TiAlCN matrix with the lubricating properties of MoS2 has an extremely beneficial effect in further improving the tribological performance of the resulting composite. The coatings were deposited on hardmetal (WC-Co) and Si (100) substrates using reactive magnetron sputtering. The structure of the coatings is studied by plain-view TEM and XTEM, electron diffraction and ED X. The tribological properties were examined by Pin-on-Disk (PoD) tribometer. The adhesion was estimated by scratch test, and the hardness was measured by nanoindentation. All the coatings examined had a very low friction coefficient (typically below 0.09) and volumetric wear rate against 100Cr6 steel (AISI 52100) of 7.10-7 mm3/N/m. The relation of deposition parameters to structure to properties is discussed. To the authors knowledge, this is the first paper describing quaternary TiAlCN matrix with inclusions of MoS2.


1998 ◽  
Vol 517 ◽  
Author(s):  
T.W. Scharf ◽  
R.D. Ott ◽  
D. Yang ◽  
J.A. Barnard

AbstractIn this investigation, the wear durability of existing and candidate protective overcoats and substrates was examined. Specifically, 5 nm thick diamond-like carbon (DLC) and nitrogenated diamond-like carbon (N-DLC) overcoats were deposited by sputtering onto glass, glass-ceramic, and NiP/AlMg substrates. The magnetic medium was a 15 nm thick layer of CoCrPt deposited on a 50 nm thick underlayer of CrV. The wear resistance of the hard disks was determined by a recently developed depth sensing reciprocating scratch test using the Nano Indenter© II. During the scratch tests, a constant normal load of 30 jtN was maintained at an indenter velocity of 2μm/sec. It was found the N-DLC/CoCrPt/CrV/glass disk exhibited the most wear resistance and least amount of plastic deformation after the last wear event. Conversely, the NDLC/CoCrPt/CrV/NiP/AiMg disk displayed the least wear resistance even though the magnitude of the elastic recovery was the greatest. This amount of recovery was influenced by the high elastic modulus of the NiP/AIMg substrate. Consequently, the scratch test failed to isolate the intrinsic properties of the overcoat, however it provided a very powerful means of quantitatively assessing the overall response of the whole magnetic disk. This is more relevant since it simulates the response the disks see in performance. In addition, a discrete amount of nitrogen up to 14 atomic % incorporated into the amorphous network resulted in an increase in overcoat durability compared to the DLC overcoat. This was attributed to an increase in the XPS determined number of N-sp3 C bonded sites in a predominantly N-sp2 C bonded matrix. However, with increasing nitrogen concentrations ≥18%, the film structure was weakened due to the micro-Raman spectroscopy determined formation of terminated sites in the amorphous carbon network since nitrogen failed to connect the sp2 domains within the network.


Author(s):  
S.A. Silkin ◽  
A.V. Gotelyak ◽  
N. Tsyntsaru ◽  
A.I. Dikusar ◽  
R. Kreivaitis ◽  
...  

Evaluation of tribological behaviour of Fe-W, Ni-W and Co-W coatings produced by electrodeposition at various bulk current densities (BCD) was under investigation in the given study. BCD does not have essential effect on the microhardness and wear characteristics of Fe-W and Co-W coatings. But the scratch tests reveal the presence of such influence. These tests showed superior wear resistance for the coatings obtained at low BCD. It was found that BCD has influence on wear resistance of Ni-W coatings under dry friction conditions. The BCD also has an influence on the coefficient of friction of Fe-W and Ni-W coatings at dry friction conditions. However, such an effect is opposite to that, observed at the scratch test.


2021 ◽  
Vol 406 ◽  
pp. 419-429
Author(s):  
Amel Gharbi ◽  
Khedidja Bouhamla ◽  
Oualid Ghelloudj ◽  
Chems Eddine Ramoul ◽  
Djamel Berdjane ◽  
...  

The present work is a contribution in investigating the effect of heat treatment on microstructure, hardness and friction wear of A105N steel. Samples of 25x25 mm2 cross-section and 15mm thickness have been prepared from the as-received material and then heat-treated. The samples were austenitized at 1050°C for 60 minutes followed by water quenching, then tempered at 500 and 700°C for 120 minutes. Microstructural changes and their effect on the wear resistance and hardness were investigated according to the applied heat treatments. The main results show that after quenching the structure is mostly composed of quenched martensite, which confers high hardness and friction resistance to the steel. While the tempered structure is composed of tempered martensite and ferrite. As the temperature rises to 700°C, the tempered martensite decreases and is fully transformed to ferrite and cementite. A good wear resistance expressed by a low friction coefficient and a low wear rate is achieved by tempering at 500°C.


Sign in / Sign up

Export Citation Format

Share Document