Quaternary–matrix, nanocomposite self-lubricating PVD coatings in the system TiAlCN-MoS2 – structure and tological properties

2003 ◽  
Vol 788 ◽  
Author(s):  
V. Spassov ◽  
A. Savan ◽  
A. R. Phani ◽  
M. Stueber ◽  
H. Haefke

ABSTRACTNowadays the demands placed upon the tooling in processes such as cutting, drilling, milling, stamping, bending, etc. are constantly growing and restrictive. On one hand, productivity, cost efficiency and quality all require high-speed processes to be developed. On the other hand, environmental safety requires very little or no lubricant to be used (dry cutting or minimized spray-lubrication). When combined, these two considerations mean: the tool should wear very little, withstand high temperatures and the friction between the tool and the work piece should be minimized. An apparent approach to simultaneously satisfying such requirements is coating the tools with self-lubricating hard coatings. Quaternary TiAlCN is a rapidly developing hard coating suitable for a number of cutting applications. The well-known wear-resistant coating TiN has been demonstrated to have improved high-temperature oxidation resistance when aluminum is included, i.e. TiAl N. Addition of yet a fourth element, carbon, has the primary effect of lowering the high friction coefficient occurring between the ceramic coating and steel. The high hardness, toughness, heat resistance and low friction coefficient of TiAlCN make it the ideal candidate for applications such as milling, hobbing, tapping, stamping and punching. MoS2 is a well-known solid lubricant widely used as tribological coatings, especially for applications working in vacuum or dry environment. Combining the wear resistance of the quaternary TiAlCN matrix with the lubricating properties of MoS2 has an extremely beneficial effect in further improving the tribological performance of the resulting composite. The coatings were deposited on hardmetal (WC-Co) and Si (100) substrates using reactive magnetron sputtering. The structure of the coatings is studied by plain-view TEM and XTEM, electron diffraction and ED X. The tribological properties were examined by Pin-on-Disk (PoD) tribometer. The adhesion was estimated by scratch test, and the hardness was measured by nanoindentation. All the coatings examined had a very low friction coefficient (typically below 0.09) and volumetric wear rate against 100Cr6 steel (AISI 52100) of 7.10-7 mm3/N/m. The relation of deposition parameters to structure to properties is discussed. To the authors knowledge, this is the first paper describing quaternary TiAlCN matrix with inclusions of MoS2.

2010 ◽  
Vol 455 ◽  
pp. 467-471
Author(s):  
Ji Ming Xiao ◽  
Yan Li ◽  
L.J. Bai ◽  
Qi Long Yuan ◽  
Jian Ming Zheng

The graphite-like carbon (GLC) coating was deposited onto high-speed steel (HSS) twist drills by magnetron sputter ion plating technique. The drilling tests were performed on the ferrous metal under dry cutting conditions. By the analysis and comparison of the flank wear and the drilling forces on drills, the cutting performance of GLC coated HSS tools was researched. The results show that GLC coating with high hardness and low friction coefficient, due to its good adhesion and match with HSS substrate, can significantly improve the cutting performance of HSS twist drills, prolong the tool life, decrease the drilling forces in drilling the ferrous metal. And its cutting performance is better than the hard coated drills in the lower speed, but its thermal stability is inferior to the hard coated drills in the higher speed.


2010 ◽  
Vol 33 ◽  
pp. 483-486
Author(s):  
Hai Dong Yang ◽  
Xi Quan Xia ◽  
Zhen Hua Qing

The method of “cutting instead of grinding” on hardened steel is always attractive to engineers. To gain this aim the tool material must first be found. C3N4 is a new kind of super hard material and has comparable properties with diamond in high hardness, wear-resistance, low friction coefficient and thermal conductivity. A number of dry-cutting tests were carried out by C3N4-film coated tool on hardened steel, proved the coating tool is suitable for hard dry cutting.


Friction ◽  
2020 ◽  
Author(s):  
Zelong Hu ◽  
Xue Fan ◽  
Cheng Chen

Abstract sp2 nanocrystallited carbon films with large nanocrystallite sizes, smooth surfaces, and relative high hardness were prepared with different ion irradiation densities regulated with the substrate magnetic coil current in an electron cyclotron resonance plasma sputtering system. Their multiscale frictional behaviors were investigated with macro pin-on-disk tribo-tests and micro nanoscratch tests. The results revealed that, at an ion irradiation density of 16 mA/cm2, sp2 nanocrystallited carbon film exhibits the lowest friction coefficient and good wear resistant properties at both the macroscale and microscale. The film sliding against a Si3N4 ball under a contact pressure of 0.57 GPa exhibited a low friction coefficient of 0.09 and a long wear life at the macroscale. Furthermore, the film sliding against a diamond tip under a contact pressure of 4.9 GPa exhibited a stable low friction coefficient of 0.08 with a shallow scratch depth at the microscale. It is suggested that sp2 nanocrystallites affect the frictional behaviors in the cases described differently. At the macroscale, the contact interface via the small real contact area and the sp2 nanocrystallited transfer layer dominated the frictional behavior, while the sp2 nanocrystallited structure in the film with low shear strength and high plastic resistivity, as well as the smooth surface morphology, decided the steady low nanoscratch properties at the microscale. These findings expand multiscale tribological applications of sp2 nanocrystallited carbon films.


1993 ◽  
Vol 308 ◽  
Author(s):  
Ru Wang

ABSTRACTThe validity of Lc of film failure is studied with friction — detected scratch test . The specimens used in the experiment are ion-plated TiN and Ti films,Chemical-Plated NiPCu films on steel of various hardness,ion beam mixed plated TiN films on optical glass,The morphology of failed films was studied under optical microscope and scanning electronmicroscope,The composition of starting failure of films was analyzed with electro — probe. It is found that in the curves of scratch tests of ion-plated TiN and Ti films on high-speed steel,the load corresponding the sudden change of the horizontal force is the same as the critical load of film failure,however,the critical load obtained in the scratch test of the ion-plated TiN and Ti films on soft steel is the some deference compared with optical microscope analyzed, that is principally due to the property of films and substrates (hardness and coefficient).The morphology and mechanism of ion — plated TiN and Ti films on high —speed steel are also studied in the paper.The adhesion between film and substrate is an effective method in evaluating the films property. After apprasing the effectiveness of acoustic emission monitoring scratch test, someone think that no matter coated with hard or soft film it is effective on the brittle hard substrate. However,there exist errors to different extent on other film-substrate system,and the scratch test is inapplicable for soft film-soft substrate system[1]. P. A. Steinmann pointed out while studying the factors influnceing the critical load Lc,that friction coefficient is a key factor on Lc,it provided valuable information in measuring Lc,but it think it is imporsible to measure Lc totally dependent on sudden change friction or friction coefficient, howeveer, for a specific coating substrate system,it is acceptable to say that Lc is dependent on friction coefficient[2]. This paper study experimentally on the friction detected scratch test and found out that effectiveness of Lc varies substantially in different film-substrate system. The author studiied the regularity of various system and discuse the season. The failure morphology and principles of ion-plated TiN and Ti film on highspeed steel are also analyzed in this paper.


Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz

Purpose: The purpose of this article is to characterize and compare the microstructure and tribological properties of low friction DLC:Ti and MoS2 thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC:Ti and MoS2 thin films deposited by PACVD technology and magnetron sputtering method respectively were used. Observations of topography were made using atomic force microscope (AFM). Adhesion of the coating to the substrate material was verified by the scratch test. The friction coefficient and wear rate of the coating were determined in the ball-on-disc test. Findings: AFM as well as adhesion and friction coefficient tests confirmed low friction nature of MoS2 and DLC:Ti coatings. During the research information on the behaviour of coatings under tribological load was obtained. The investigated coating reveals high wear resistance and good adhesion to the substrate. Practical implications: The area of testing of low-friction thin films is widely studied due to their practical application. Intensive development of new technologies requires the introduction of corresponding layers of both full protective functions and reducing friction. Originality/value: Growing area of low-friction coatings with specific properties requires thorough tribological and topographical research, which is closely related to these properties.


2007 ◽  
Vol 345-346 ◽  
pp. 1541-1544
Author(s):  
Han Ki Yoon ◽  
Sung Ho Park ◽  
Won Jo Park

Silicon carbide (SiC) materials have been extensively studied for high-temperature components in fusion blanket system and gas turbines, because they have excellent a hightemperature mechanical properties, high thermal conductivity and wear resistance. However, the brittle characteristics of SiC such as low strain-to fracture still impose a severe limitation on the practical application of SiC materials. Therefore, a study of the sliding wear characteristics and fabrication of SiC ceramic by sintering temperature and additives are need. As the result of abrasion, the friction coefficient of the monolithic SiC sintered at 1800°C was the lowest, and the friction coefficient of that sintered at 1760°C was the highest. The monolithic SiC manufactured at 1800°C showed the highest hardness and the lowest friction coefficient. The friction coefficient of the monolithic SiC sintered by the SiO2 contents of 2wt% was the lowest, and the friction coefficient that sintered by the SiO2 contents of 5wt% was the highest. 1800°C of sintering temperature and 2wt% of SiO2 contents ware shown high hardness, low friction coefficient and wear loss compare with other temperatures and SiO2 contents.


2010 ◽  
Vol 443 ◽  
pp. 318-323 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou

A multi-scale and multi-phase nanocomposite ceramic cutting tool material Al2O3/TiC/TiN(LTN) with high comprehensive mechanical properties has been successfully fabricated by means of adding micro-scale TiC and nano-scale TiN particles. The cutting performance and wear mechanisms of this advanced ceramic cutting tool were researched by turning two kinds of hardened steel 40Cr and T10A respectively. Compared with the commercial ceramic tool LT55, LTN showed a superior wear resistance with certain machining parameters. The machining tests indicated that the new materials tool is suitable for continuously dry cutting of hardened steel with high hardness at high speed.


2019 ◽  
Vol 1 (96) ◽  
pp. 5-21
Author(s):  
M. Pancielejko

Purpose: The work is connected with the current trend related to the modification of tool surfaces with PVD and CVD methods through the deposition of coatings to increase their durability. The research results of coated tools tests that are carried out in industrial conditions are presented in details. Design/methodology/approach: Structure, chemical and phase composition investigations related to the mechanical and tribological properties of coatings produced on tool substrates and analysis of the results are included. Investigations of the properties of deposited coatings on the following tool materials were made: high speed steels, hot work tool steel, sintered carbides and SiAlON tool ceramics. Findings: Interpretation of production tests results of coated tools and an analysis of the wear mechanisms of tool blades in relation to the properties of coatings and their adhesion, in particular characterized in the scratch test, were described. Research limitations/implications: Adhesion scratch test cannot be the only and final method of such evaluation. For example a direct comparison of the results of the scratch tests of coatings is possible when adhesion is being examined of different coatings yet on the same type of the substrate. Practical implications: Based on the adhesion test results using the scratch test, the suitability of the coatings produced on the cutting tools can be quickly assessed. Originality/value: It was sought those parameters which characterize the properties of coatings, ones which would permit to effectively/practically assess the performance of tools with coatings produced, with an exclusion or limitation of long-term and expensive durability tests of tools that are carried out in industrial conditions.


2013 ◽  
Vol 838-841 ◽  
pp. 148-151
Author(s):  
Bo Lin Yu

In this paper, an elevator safety gear wedge with surface metal-ceramic composite coatings is proposed. After composite coating, the friction performance of the elevator safety gear wedge is very stable at high temperature, because of high hardness and high temperature oxidation resistance of coating material. And the friction coefficient becomes small by coating ceramic. In this research, six samples with different coating are prepared. These samples are installed in elevator safety system, and related speed parameters and stopping distance of elevator are tested. A conclusion can be drawn that sample 4 with 45# steel substrate and NiCrBSi-60 coating has a suitable friction coefficient, and the deceleration of elevator is controlled in the range of 0.2 to 1.0g when sample is installed in safety gear system.


2010 ◽  
Vol 142 ◽  
pp. 26-30
Author(s):  
Zhen Hua Qing ◽  
Dun Wen Zuo ◽  
Feng Xie ◽  
Chong Gao Zhang

The high-speed hard and dry cutting chips of hardened alloy-steel with PCBN tool is presented in this paper: After the work piece temperature measured by ThermaVision infrared thermometer, it is proved that the heat generated by cutting is carried out by chips; After SEM analyzed chip it is proved that the cutting temperature is increased and then fallen and the PCBN tool suitable for high-speed hard and dry cutting. It is suitable for PCBN tool cutting hardened alloy-steel 42CrMo instead of grinding.


Sign in / Sign up

Export Citation Format

Share Document