scholarly journals Effects of Microstructure Evolution on Fretting Wear Behaviors of 25CrNi2MoVE Steel under Different Tempering States

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 351
Author(s):  
Xiongfeng Hu ◽  
Fuqiang Lai ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Haipeng Liu ◽  
...  

Increasing load requirements and harsh operating conditions have worsened the wear of drive shafts in special field vehicles. In this paper, the evolution of the microstructure and fretting wear behaviors of 25CrNi2MoVE torsion shaft steel and their influence on the wear mechanisms were investigated as a function of tempering temperature. The results showed that the coarse grain size, low matrix hardness and non-metallic inclusions in the as-received state lead to a high wear rate and serious adhesive wear. The grain refinement after normalizing and the formed M5C2 carbide and bainite helped to improve the wear resistance and worn surface quality. Low temperature tempering is conducive to further improve the wear resistance of normalized samples, and the wear rate and worn surface roughness are increased gradually after tempering temperature increases. For quenching, although martensite structure can achieve a lower wear rate, the coefficient of friction is much higher; the wear mechanisms are primarily fatigue wear and adhesive wear. Although the adhesive wear degree and worn surface roughness were increased, the optimal anti-wear performances are obtained under tempering at 350 °C with good continuity of the surface oxide film. Excessive tempering temperature will make the softened matrix unable to form a beneficial “third-body wear”.

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Poulami Maji ◽  
R. K. Dube ◽  
Bikramjit Basu

Copper–tungsten composite materials are developed for applications such as electrical contacts, resistance electrodes, and contact tips in welding guns as well as for components requiring higher wear resistance. In addition to the aspect of improved performance, it is scientifically interesting to assess the tribological properties, and therefore the objectives of the present work include, to determine the role of W additions in improving the fretting wear resistance of Cu for electrical applications, to determine the optimum concentration for W additions, and to identify the mechanisms responsible for fretting wear improvements. In addressing these issues, a planned set of fretting wear tests were conducted on powder metallurgically processed Cu–W composites (maximum W content of 20 wt %) against steel counterbody under varying load (up to 10 N) for 10,000 cycles. It has been observed that at lower loads of 2 N, the coefficient of friction (COF) recorded was ∼0.9 for the Cu–20 wt % W/steel, whereas it was ∼0.85 for a pure Cu/steel couple. Under similar operating conditions with the increase in load, the COF decreases to 0.5 at 10 N load, irrespective of the composition of the Cu–W composite. Furthermore, the incorporation of 5 wt % W has reduced the volumetric wear loss by 4–6 folds in comparison to unreinforced Cu. The addition of even higher percentage of W has led to increase its wear resistance by ∼10 folds. Under the investigated conditions, the wear rate systematically decreases with the increase in load for all the tested Cu–W composites. Based on the topographical observation of worn surfaces, it is observed that wear mechanisms for the Cu and Cu–W composites are tribochemical wear, adhesive wear, and abrasive wear. The incorporation of harder W particles (5 wt % or more) help in abrading the steel ball and in forming a dense tribolayer of FexOy, which effectively reduces wear rate and hence, increases wear resistance of the Cu–W composite surface in reference to unreinforced Cu.


2015 ◽  
Vol 817 ◽  
pp. 571-576
Author(s):  
Jun Tao Zou ◽  
Chan Wang ◽  
Yang Li ◽  
Xian Hui Wang ◽  
Shu Hua Liang

The effect of ambient temperature, materials state and lubrication condition on wear resistance of Cu10Al5Fe5Ni alloy was investigated. The wear surface morphology was characterized by a scanning electron microscope (SEM), and the wear mechanism was discussed as well. The results show that the friction coefficient of Cu10Al5Fe5Ni alloy increases and then decreases with increasing temperature. The wear rate of the Cu10Al5Fe5Ni alloy after solid solution and ageing treatment is less than that of the as-cast alloy, and the wear rate of Cu10Al5Fe5Ni alloy reduces dramatically from 5.31×10-5 mm3 / (m· N) into 1.80×10-6 mm3 / (m·N) after adding lubricating oil. At elevated temperature, the prior wear mechanism is the fatigue wear, accompanying by slight abrasive wear and adhesive wear for the aged Cu10Al5Fe5Ni alloy.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 109 ◽  
Author(s):  
Haojun Wang ◽  
Tao Chen ◽  
Weilong Cong ◽  
Defu Liu

Ti-based ceramic coatings on Ti6Al4V substrates were successfully prepared through a laser cladding process using pre-placed starting materials of TiCN + SiO2 mixed powder without or with adding a 3 wt % CeO2 nanoparticles additive, aiming at improving the wear resistance of the Ti6Al4V alloy for biological applications. The effects of the CeO2 nanoparticles additive on the microstructure, microhardness, and wear performance of the coatings were analyzed in detail. The observations showed that the main compositions of the cladding coating were TiCN and TiN phase. Compared to the coatings without CeO2, the coatings modified with CeO2 nanoparticles led to more excellent mechanical properties. The average microhardness of the coatings modified with CeO2 nanoparticles was approximately 1230 HV0.2, and the wear volume loss of the coatings modified with CeO2 nanoparticles was approximately 14% less than that of the coatings without CeO2 under a simulated body fluid (SBF) lubrication environment. The major reasons included that the microstructure of the coatings modified with CeO2 nanoparticles was refined and compact granular crystalline. The wear mechanisms of the coatings were investigated from the worn surface of the coatings, wear debris, and the worn surface of the counter-body balls. The wear mechanisms of the coatings without CeO2 included abrasive wear, adhesive wear, and fatigue wear, while the wear mechanisms of the coatings modified with CeO2 nanoparticles included only abrasive wear and adhesive wear, because the fine microstructure of the coatings had an excellent resistance to fatigue wear.


2020 ◽  
Vol 72 (7) ◽  
pp. 821-827
Author(s):  
Zhaojie Meng ◽  
Yunxia Wang ◽  
Xiaocui Xin ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose The purpose of this study is to examine the fretting wear property of ultra-high molecular weight polyethylene (UHMWPE)-based composites reinforced by different content of attapulgite. Design/methodology/approach A series of composites were prepared by a hot-pressing method. Fretting tests were carried out using an SRV-IV oscillating reciprocating friction wear tester with a load of 10 N and a frequency of 100 Hz. The morphology of the fracture structure and the worn surface was observed by field-emission scanning electron microscopy, X-ray diffraction and a non-contact three dimensional surface profiler. Findings With the addition of attapulgite, the microstructure of the composites become more regular, and their heat resistance improved. Furthermore, the friction coefficient and the specific wear rate of the composites with lower filler content reduced compared with that of neat UHMWPE, and the optimum filler content is 1 per cent. Originality/value The study investigated the fretting resistance mechanism of the attapulgite in the UHMWPE matrix. The results could help to provide some experimental evidence for the broader application of silicates on the fretting wear resistance of polymers. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0420/


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yongshui Shen ◽  
Tongjin Sun ◽  
Tao Zhu ◽  
Ying Xiong

Abstract A laser shock peening (LSP) layer, a micro-arc oxidation (MAO) coating, and an LSP/MAO composite coating were fabricated on the surface of AZ80 magnesium alloy by laser shock and micro-arc oxidation process. The ball-disc grinding method was used to perform wear test on the three treated specimens in simulated body fluids (SBF) with pH values of 4, 7.4 and 9. The morphology and element content of worn surface were investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results indicated that the wear rates of the three treated specimens in three pH environment in numerical order were pH 4 > pH 7.4 > pH 9, respectively. The wear rates of the three treated specimens in the same pH environment were arranged in the order of MAO > LSP > LSP/MAO, respectively. The main wear mechanisms of the LSP specimen in pH 4 environment were fatigue wear and corrosion wear, while it were corrosion wear and adhesive wear in pH 7.4 and pH 9 environments. Abrasive wear, fatigue wear and corrosion wear were the main wear mechanisms of the MAO specimen in pH 4 environment, while abrasive wear, adhesive wear and corrosion wear were the main wear mechanisms of that in pH 7.4 and pH 9 environments. The corrosion wear resistance of the LSP/MAO specimen in SBF solution with three pH values was improved due to the synergism of LSP fine crystal layer and MAO coating.


2020 ◽  
Vol 993 ◽  
pp. 836-843
Author(s):  
Ke Guo ◽  
Zhi Qiang Zhang ◽  
Zhong Zheng Pei ◽  
Jie Xu ◽  
Yi Fan Feng

Here we developed a hot-pressed molded resin-based brake pad material reinforced by a nano sodium titanate whisker in comparison with nano potassium titanate whisker. The effect of the whiskers on the tribology behavior was investigated. Though nano sodium titanate whisker reinforced brake material showed higher porosity (+12.29% averagely) and lower hardness (-25.8% averagely) caused by the impurities, it exhibited improved ability in stabilizing the friction coefficient and enhancing 25.5%, 31.1%, 25.9% higher wear resistance, when the volume contents of whisker are 7.5%, 15% and 22.5%, respectively, compared to the nano potassium titanate whisker reinforced brake material. The wear mechanisms of the nano sodium titanate whisker reinforced brake materials were determined as embedded debris, delaminated crater, moderate layers transfer, uniform furrows, primary plateaus and secondary plateaus in similar size, indicating a main wear form of abrasive wear instead of adhesive wear.


2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2831 ◽  
Author(s):  
Alejandro Gonzalez-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

Vanadis 10 steel is a powder metallurgy (PM) processed tool steel. It is a ledeburitic steel with 8% Cr and 10% V. By deliberately varying the process parameters related to the quenching, tempering, and nitriding of these steels, the aim of this study is to determine which of these parameters have a significant influence on its adhesive wear resistance. The research methodology employed was a Design of Experiments (DoE) with six factors and two levels for each factor. The tempering temperature, number of temperings, and carrying out of a thermochemical nitriding treatment were found to have a significant effect. To increase adhesive wear resistance, austenitization at 1100 °C with air cooling is recommended, followed by three temperings at 500 °C and a subsequent nitriding treatment. It should be noted that the quench cooling medium does not have a significant influence on wear resistance. Furthermore, (Fe,Cr)7C3 (M7C3 carbides) are transformed into carbonitrides during nitriding. However, (Fe,V)C (MC carbides) are not affected by this nitriding process.


2012 ◽  
Vol 562-564 ◽  
pp. 318-321 ◽  
Author(s):  
Xiao Peng Huang ◽  
Jing Feng Wu ◽  
Fang Xin Wan ◽  
Ke Ping Zhang

In this study, the wear behavior of 9SiCr steel under different treatment with plant abrasive was evaluated by using an abrasive rubber wheel tester. The samples’ microstructures were analyzed by a metallurgical microscope, the samples’ worn surface morphology was observed by using SEM.The results show that: With the increasing of hardness of sample, Its wear resistance is greatly improved. Hardness of laser quenching sample is the highest, wear resistance of it is the best, the second is sub temperature sample. The wear rates and the wear coefficients are proportional to the sliding distance. The Laser quenching samplel display a consistent behaviour with a very low wear rate and a small increase of the wear damage is observed during the abrasive wear tests. The worn surfaces of the three kind samples are characterized by the micro-cutting wear, and no treatment sample is accompanied by fatigue wear mechanism.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


Sign in / Sign up

Export Citation Format

Share Document