scholarly journals A Combined Pyro- and Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 2: Lithium Recovery from Li Enriched Slag—Thermodynamic Study, Kinetic Study, and Dry Digestion

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1558
Author(s):  
Jakub Klimko ◽  
Dušan Oráč ◽  
Andrea Miškufová ◽  
Claudia Vonderstein ◽  
Christian Dertmann ◽  
...  

Due to the increasing demand for battery raw materials, such as cobalt, nickel, manganese, and lithium, the extraction of these metals, not only from primary, but also from secondary sources, is becoming increasingly important. Spent lithium-ion batteries (LIBs) represent a potential source of raw materials. One possible approach for an optimized recovery of valuable metals from spent LIBs is a combined pyro- and hydrometallurgical process. The generation of mixed cobalt, nickel, and copper alloy and lithium slag as intermediate products in an electric arc furnace is investigated in part 1. Hydrometallurgical recovery of lithium from the Li slag is investigated in part 2 of this article. Kinetic study has shown that the leaching of slag in H2SO4 takes place according to the 3-dimensional diffusion model and the activation energy is 22–24 kJ/mol. Leaching of the silicon from slag is causing formation of gels, which complicates filtration and further recovery of lithium from solutions. The thermodynamic study presented in the work describes the reasons for the formation of gels and the possibilities of their prevention by SiO2 precipitation. Based on these findings, the Li slag was treated by the dry digestion (DD) method followed by dissolution in water. The silicon leaching efficiency was significantly reduced from 50% in the direct leaching experiment to 5% in the DD experiment followed by dissolution, while the high leaching efficiency of lithium was maintained. The study takes into account the preparation of solutions for the future trouble-free acquisition of marketable products from solutions.

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1069
Author(s):  
Marcus Sommerfeld ◽  
Claudia Vonderstein ◽  
Christian Dertmann ◽  
Jakub Klimko ◽  
Dušan Oráč ◽  
...  

Due to the increasing demand for battery raw materials such as cobalt, nickel, manganese, and lithium, the extraction of these metals not only from primary, but also from secondary sources like spent lithium-ion batteries (LIBs) is becoming increasingly important. One possible approach for an optimized recovery of valuable metals from spent LIBs is a combined pyro- and hydrometallurgical process. According to the pyrometallurgical process route, in this paper, a suitable slag design for the generation of slag enriched by lithium and mixed cobalt, nickel, and copper alloy as intermediate products in a laboratory electric arc furnace was investigated. Smelting experiments were carried out using pyrolyzed pelletized black mass, copper(II) oxide, and different quartz additions as a flux to investigate the influence on lithium-slagging. With the proposed smelting operation, lithium could be enriched with a maximum yield of 82.4% in the slag, whereas the yield for cobalt, nickel, and copper in the metal alloy was 81.6%, 93.3%, and 90.7% respectively. The slag obtained from the melting process is investigated by chemical and mineralogical characterization techniques. Hydrometallurgical treatment to recover lithium is carried out with the slag and presented in part 2.


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Leonard Kurz ◽  
Mojtaba Faryadras ◽  
Ines Klugius ◽  
Frederik Reichert ◽  
Andreas Scheibe ◽  
...  

Due to the increasing demand for battery electric vehicles (BEVs), the need for vehicle battery raw materials is increasing. The traction battery (TB) of an electric vehicle, usually a lithium-ion battery (LIB), represents the largest share of a BEV’s CO2 footprint. To reduce this carbon footprint sustainably and to keep the raw materials within a closed loop economy, suitable and efficient recycling processes are essential. In this life cycle assessment (LCA), the ecological performance of a waterjet-based direct recycling process with minimal use of resources and energy is evaluated; only the recycling process is considered, waste treatment and credits for by-products are not part of the analysis. Primary data from a performing recycling company were mainly used for the modelling. The study concludes that the recycling of 1 kg of TB is associated with a global warming potential (GWP) of 158 g CO2 equivalents (CO2e). Mechanical removal using a water jet was identified as the main driver of the recycling process, followed by an air purification system. Compared to conventional hydro- or pyrometallurgical processes, this waterjet-based recycling process could be attributed an 8 to 26 times lower GWP. With 10% and 20% reuse of recyclate in new cells, the GWP of TBs could be reduced by 4% and 8%, respectively. It has been shown that this recycling approach can be classified as environmentally friendly.


2015 ◽  
pp. 103-108
Author(s):  
R. E. Shesterikova ◽  
E. A. Shesterikova ◽  
M. V. Popov

It is known that development of gas, gas-condensate and oil deposits is related with production of associated mineralized water. For creation of highly profitable processes of production and processing of hydrocarbons the methods of utilization of secondary sources of raw materials and energy become very important. The volumes of produced associated water at the petroleum complex facilities are so great, that it permits to consider them as a source of raw materials for processing with further receiving various commodity products, for example, process liquids, drilling fluids, iodine, bromine and their compounds.


Author(s):  
Thomas F Fässler ◽  
Stefan Strangmüller ◽  
Henrik Eickkhoff ◽  
Wilhelm Klein ◽  
Gabriele Raudaschl-Sieber ◽  
...  

The increasing demand for a high-performance and low-cost battery technology promotes the search for Li+-conducting materials. Recently, phosphidotetrelates and aluminates were introduced as an innovative class of phosphide-based Li+-conducting materials...


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657
Author(s):  
José María Encinar ◽  
Juan Félix González ◽  
Sergio Nogales-Delgado

On account of the continuous decrease in oil reserves, as well as the promotion of sustainable policies, there is an increasing interest in biomass conversion processes, which imply the search for new raw materials as energy sources, like forestry and agricultural wastes. On the other hand, gasification seems to be a suitable thermal conversion process for this purpose. This work studied the thermogravimetry of the steam gasification of charcoal from heather (Calluna vulgaris) in order to determine the kinetics of the process under controlled reaction conditions. The variables studied were temperature (from 750 to 900 °C), steam partial pressure (from 0.26 to 0.82 atm), initial charcoal mass (from 50 to 106 mg), particle size (from 0.4 to 2.0 mm), N2 and steam volumetric flows (from 142 to 446 mL·min−1) and catalyst (K2CO3) concentration (from 0 to 10% w/w). The use of the shrinking core model and uniform conversion model allowed us to determine the kinetic parameters of the process. As a result, a positive influence of catalyst concentration was found up to 7.5% w/w. The kinetic study of the catalytic steam gasification showed activation energies of 99.5 and 114.8 kJ·mol−1 and order of reactions (for steam) of 1/2 and 2/3.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Sandra Pavón ◽  
Doreen Kaiser ◽  
Robert Mende ◽  
Martin Bertau

The global market of lithium-ion batteries (LIB) has been growing in recent years, mainly owed to electromobility. The global LIB market is forecasted to amount to $129.3 billion in 2027. Considering the global reserves needed to produce these batteries and their limited lifetime, efficient recycling processes for secondary sources are mandatory. A selective process for Li recycling from LIB black mass is described. Depending on the process parameters Li was recovered almost quantitatively by the COOL-Process making use of the selective leaching properties of supercritical CO2/water. Optimization of this direct carbonization process was carried out by a design of experiments (DOE) using a 33 Box-Behnken design. Optimal reaction conditions were 230 °C, 4 h, and a water:black mass ratio of 90 mL/g, yielding 98.6 ± 0.19 wt.% Li. Almost quantitative yield (99.05 ± 0.64 wt.%), yet at the expense of higher energy consumption, was obtained with 230 °C, 4 h, and a water:black mass ratio of 120 mL/g. Mainly Li and Al were mobilized, which allows for selectively precipitating Li2CO3 in battery grade-quality (>99.8 wt.%) without the need for further refining. Valuable metals, such as Co, Cu, Fe, Ni, and Mn, remained in the solid residue (97.7 wt.%), from where they are recovered by established processes. Housing materials were separated mechanically, thus recycling LIB without residues. This holistic zero waste-approach allows for recovering the critical raw material Li from both primary and secondary sources.


2021 ◽  
Vol 125 ◽  
pp. 192-203
Author(s):  
Nathália Vieceli ◽  
Raquel Casasola ◽  
Gabriele Lombardo ◽  
Burçak Ebin ◽  
Martina Petranikova

2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


Sign in / Sign up

Export Citation Format

Share Document