scholarly journals A Comprehensive Study of Steel Powders (316L, H13, P20 and 18Ni300) for Their Selective Laser Melting Additive Manufacturing

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 86 ◽  
Author(s):  
Jujie Yan ◽  
Yinghao Zhou ◽  
Ruinan Gu ◽  
Xingmin Zhang ◽  
Wai-Meng Quach ◽  
...  

The determination of microstructural details for powder materials is vital for facilitating their selective laser melting (SLM) process. Four widely used steels (316L, H13, P20 and 18Ni300) have been investigated to detail their powders’ microstructures as well as laser absorptivity to understand their SLM processing from raw material perspective. Phase components of these four steel powders were characterized by X-ray diffraction (XRD), synchrotron radiation X-ray diffraction (SR-XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were utilized to reveal the surface structure of these four steel powders. It is found that phase components of H13, P20 and 18Ni300 are mainly composed of martensite and a small amount of austenite due to the high cooling rate during gas atomization processing, while 316L is characterized by austenite. XPS results show that the four steel powders all possess a layered surface structure, consisting of a thin iron oxide layer at the outmost surface and metal matrix at the inner surface. It is found that the presence of such oxide layer can improve the absorptivity of steel powders and is beneficial for their SLM process.

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1219
Author(s):  
Alexander S. Shinkaryov ◽  
Dmitriy Yu. Ozherelkov ◽  
Ivan A. Pelevin ◽  
Sergey A. Eremin ◽  
Vyacheslav N. Anikin ◽  
...  

This work aims to study the possibility of obtaining Al–C composite from AlSi10MgCu aluminum matrix with the addition of 500 nm-sized diamond particles by selective laser melting (SLM) process. Al–C composite powder was prepared by mechanical mixing to form a uniform cover along the surface of aluminum particles. The diamond content in the resulting AlSi10MgCu-diamond composite powder was equal to 0.67 wt %. The selection of the optimal SLM parameters for the obtained composite material is presented. For materials characterization, the following methods were used: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was applied after SLM printing for a detailed investigation of the obtained composites. The presence of carbon additives and the formation of aluminum carbides in the material after the SLM process were demonstrated.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Patcharanan Junploy ◽  
Titipun Thongtem ◽  
Somchai Thongtem ◽  
Anukorn Phuruangrat

SrSn(OH)6 precursors synthesized by a cyclic microwave radiation (CMR) process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG) were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl) dye under ultraviolet (UV) radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 926
Author(s):  
Shamim Ahmed Hira ◽  
Mohammad Yusuf ◽  
Dicky Annas ◽  
Hu Shi Hui ◽  
Kang Hyun Park

Activated carbon (AC) was fabricated from carrot waste using ZnCl2 as the activating agent and calcined at 700 °C for 2 h in a tube furnace. The as-synthesized AC was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis; the results revealed that it exhibited a high specific surface area and high porosity. Moreover, this material displayed superior catalytic activity for the degradation of toxic Rhodamine B (RhB) dye. Rate constant for the degradation of RhB was ascertained at different experimental conditions. Lastly, we used the Arrhenius equation and determined that the activation energy for the decomposition of RhB using AC was approximately 35.9 kJ mol−1, which was very low. Hopefully it will create a great platform for the degradation of other toxic dye in near future.


Sign in / Sign up

Export Citation Format

Share Document