scholarly journals Effect of Ni Addition on Catalytic Performance of Fe87Si5B2P3Nb2Cu1 Amorphous Alloys for Degrading Methylene Blue Dyes

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 341
Author(s):  
Jinfang Shi ◽  
Bingying Ni ◽  
Jingjing Zhang ◽  
Chen Wu ◽  
Daowen Cheng ◽  
...  

Fe-based amorphous alloys have shown great potential in degrading azo dyes and other organic pollutants. It has been widely investigated as a kind of environmentally friendly material for wastewater remediation. In this paper, we studied the effect of Ni addition on the catalytic performance of Fe87Si5B2P3Nb2Cu1 amorphous alloy for degradation of methylene blue dyes and analyzed the reaction mechanism. (Fe87Si5B2P3Nb2Cu1)86Ni14 amorphous powder with desirable performance was produced by specific ball milling durations. Characterization of the Fe87Si5B2P3Nb2Cu1 and (Fe87Si5B2P3Nb2Cu1)86Ni14 amorphous alloys prepared by ball milling was performed by XRD and SEM. Fe87Si5B2P3Nb2Cu1 and (Fe87Si5B2P3Nb2Cu1)86Ni14 amorphous alloys were used as catalysts to catalyze the degradation of methylene blue dyes, which were detected by UV-VIS near-infrared spectrophotometer. By a series of comparative experiments, it was found that a catalyst dosage of 0.2 g and a reaction temperature of 80 °C were conditions that produced the best catalytic effect. The degradation rate of (Fe87Si5B2P3Nb2Cu1)86Ni14 amorphous alloy to methylene blue dyes prepared by ball milling increased from 67.76% to 99.99% compared with the Fe87Si5B2P3Nb2Cu1 amorphous alloy under the same conditions.

1993 ◽  
Vol 321 ◽  
Author(s):  
H. Chen ◽  
Y. He ◽  
G. J. Shiflet ◽  
S. J. Poon

ABSTRACTWe report the first direct observation of crystallization induced in the slipped planes of aluminum based amorphous alloys by bending the amorphous ribbons. Nanometer-sized crystalline precipitates are found exclusively within a thin layer (shear band) in the slipped planes extending across the deformed amorphous alloy ribbons. It is also found that the nanocrystalline aluminum can be produced by ball-Milling. It is likely that local atomic rearrangements within the shear bands create the nanocrystals which appear after plastic deformation.


2019 ◽  
Vol 34 (04) ◽  
pp. 2050050 ◽  
Author(s):  
M. N. Song ◽  
L. W. Huang ◽  
B. Z. Tang ◽  
D. Ding ◽  
Q. Zhou ◽  
...  

Small amount of Ni was added in the [Formula: see text] binary alloy to replace the Co element for improving the formability and magnetic properties of the binary amorphous alloy. It was found that the glass formability of the [Formula: see text] amorphous alloy was significantly improved by Ni addition. The Curie temperature [Formula: see text] of the [Formula: see text] metallic glasses decreases with the Ni addition, and the maximum magnetic entropy change [Formula: see text] was also improved. The mechanism for the effect of adding a small quantity of Ni on the [Formula: see text] and [Formula: see text] of the [Formula: see text] amorphous alloy was studied.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Qiang Wang ◽  
Peng Han ◽  
Shuo Yin ◽  
Wen-Juan Niu ◽  
Le Zhai ◽  
...  

Compared with traditional crystalline materials, amorphous alloys have excellent corrosion and wear resistance and high elastic modulus, due to their unique short-range ordered and long-range disordered atomic arrangement as well as absence of defects, such as grain boundaries and dislocations. Owing to the limitation of the bulk size of amorphous alloys as structural materials, the application as functional coatings can widely extend their use in various engineering fields. This review first briefly introduces the problems involved during high temperature preparation processes of amorphous coatings, including laser cladding and thermal spraying. Cold spray (CS) is characterized by a low-temperature solid-state deposition, and thus the oxidation and crystallization related with a high temperature environment can be avoided during the formation of coatings. Therefore, CS has unique advantages in the preparation of fully amorphous alloy coatings. The research status of Fe-, Al-, Ni-, and Zr-based amorphous alloy coatings and amorphous composite coatings are reviewed. The influence of CS process parameters, and powders and substrate conditions on the microstructure, hardness, as well as wear and corrosion resistance of amorphous coatings is analyzed. Meanwhile, the deposition mechanism of amorphous alloy coatings is discussed by simulation and experiment. Finally, the key issues involved in the preparation of amorphous alloy coatings via CS technology are summarized, and the future development is also being prospected.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Tae-Young Kim ◽  
Seongbin Jo ◽  
Yeji Lee ◽  
Suk-Hwan Kang ◽  
Joon-Woo Kim ◽  
...  

Fe-Ni and Co-Fe-Ni catalysts were prepared by the wet impregnation method for the production of high-calorific synthetic natural gas. The influence of Ni addition to Fe and Co-Fe catalyst structure and catalytic performance was investigated. The results show that the increasing of Ni amount in Fe-Ni and Co-Fe-Ni catalysts increased the formation of Ni-Fe alloy. In addition, the addition of nickel to the Fe and Co-Fe catalysts could promote the dispersion of metal and decrease the reduction temperature. Consequently, the Fe-Ni and Co-Fe-Ni catalysts exhibited higher CO conversion compared to Fe and Co-Fe catalysts. A higher Ni amount in the catalysts could increase C1–C4 hydrocarbon production and reduce the byproducts (C5+ and CO2). Among the catalysts, the 5Co-15Fe-5Ni/γ-Al2O3 catalyst affords a high light hydrocarbon yield (51.7% CH4 and 21.8% C2–C4) with a low byproduct yield (14.1% C5+ and 12.1% CO2).


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1690
Author(s):  
Jian Qiao ◽  
Peng Yu ◽  
Yanxiong Wu ◽  
Taixi Chen ◽  
Yixin Du ◽  
...  

Amorphous alloys have emerged as important materials for precision machinery, energy conversion, information processing, and aerospace components. This is due to their unique structure and excellent properties, including superior strength, high elasticity, and excellent corrosion resistance, which have attracted the attention of many researchers. However, the size of the amorphous alloy components remains limited, which affects industrial applications. Significant developments in connection with this technology are urgently needed. Laser welding represents an efficient welding method that uses a laser beam with high energy-density for heating. Laser welding has gradually become a research hotspot as a joining method for amorphous alloys due to its fast heating and cooling rates. In this compact review, the current status of research into amorphous-alloy laser welding technology is discussed, the influence of technological parameters and other welding conditions on welding quality is analyzed, and an outlook on future research and development is provided. This paper can serve as a useful reference for both fundamental research and engineering applications in this field.


2009 ◽  
Vol 409 ◽  
pp. 358-361
Author(s):  
Jozef Miškuf ◽  
Kornel Csach ◽  
Alena Juríková ◽  
Elena D. Tabachnikova ◽  
Vladimir Z. Bengus ◽  
...  

The fracture surface morphology of Fe76Ni2Si9B13 bulk amorphous alloys failed in compression at temperatures from 4.2 to 300 K was investigated. The samples were prepared by the explosive compaction technique from amorphous powder. It has been found that fracture stress decreases with temperature from 300 to 4.2 K. In this temperature range, the brittle failure prevails. The failure propagates across particles and along particle boundaries too. The fracture micromorphology is riverlike pattern with fine dimples.


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35027-35037 ◽  
Author(s):  
Thi Tuong Vy Phan ◽  
Subramaniyan Bharathiraja ◽  
Van Tu Nguyen ◽  
Madhappan Santha Moorthy ◽  
Panchanathan Manivasagan ◽  
...  

A novel contrast agent with broad NIR absorbing properties for combined photo-induced therapy and photoacoustic imaging.


2007 ◽  
Vol 121-123 ◽  
pp. 637-640
Author(s):  
Lai Jun Wang ◽  
Wei Li ◽  
M.H. Zhang ◽  
K.Y. Tao

A series of bulk and supported NiB amorphous alloy catalysts with different particle sizes were prepared by different chemical reduction methods. By adding a certain volume of NH3 to the reaction system and adjusting the reaction temperature, respectively, the velocity of the reaction between Ni2+ and BH4 - could be controlled and the NiB alloys with particle sizes ranging from 10 to 400nm were obtained. A novel method to prepare the supported NiB catalyst, the powder electroless plating method was also studied. The bulk and supported NiB catalysts were characterized by XRD, ICP and TEM. Hydrogenation of sulfolene was selected as the probe reaction to investigate their catalytic performance. The results revealed that the NiB/MgO prepared by Ag inducing electroless plating showed much higher catalytic activity than Raney Ni catalyst, and the powder electroless plating was a promising method to prepare the supported NiB amorphous alloy catalysts.


Sign in / Sign up

Export Citation Format

Share Document