scholarly journals Influences of Cu Content on the Microstructure and Strengthening Mechanisms of Al-Mg-Si-xCu Alloys

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 524 ◽  
Author(s):  
Yuqiang Chen ◽  
Qiang Hu ◽  
Suping Pan ◽  
Hao Zhang ◽  
Huiqun Liu ◽  
...  

The effects of the Cu content on the microstructure and strengthening mechanisms of the Al-Mg-Si-xCu alloys were systematically investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and mechanical tensile tests. The results show that, the strengthening mechanisms change with the Cu content. For as-quenched alloys, solution strengthening (σSS) is predominant when the Cu content ≥2.5 wt.%, and of equivalent importance as grain size strengthening (σH-P) when the Cu content ≤1.0 wt.%. With respect to peak-aged alloys, precipitation strengthening (σppt) is predominant when the Cu content ≥2.5 wt.%, but σSS becomes predominant when the Cu content is 4.5 wt.%. As the Cu content increases from 0.5 to 4.5 wt.%, the main type of precipitates in alloy tends to change from a β″ phase to Q′ phase, and then to a θ′ phase. Among the three types of precipitates, θ′-precipitate causes the largest increase in yield strength (σ0.2) and the largest decrease rate in elongation. β″-precipitate leads to the smallest increase in σ0.2 and the smallest decrease rate in elongation. The increase of Cu content reduces Si solubility in the Al matrix and thus decreases the nucleation rate of β″ phase during subsequent aging.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1048 ◽  
Author(s):  
Huibin Jiao ◽  
Kanghua Chen ◽  
Songyi Chen ◽  
Zhen Yang ◽  
Peng Xie ◽  
...  

In the present work, the influence of Cu content on microstructure, mechanical properties and exfoliation corrosion behaviors of Al-Zn-Mg-xCu alloy extrusions has been investigated in longitudinal-transverse (L-T) and short-longitudinal (S-L) directions by means of mechanical tensile and exfoliation corrosion testing combined with optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that a higher Cu content significantly decreased the fracture toughness and ductility of the alloy in S-L direction compared with L-T direction. Concomitant with the increase in Cu content, a transition in fracture mode was observed from transgranular dimpled rupture to intergranular rupture in S-L direction. Moreover, the exfoliation corrosion (EXCO) resistance of the alloy decreased as the Cu content increased and the exfoliation corrosion resistance of the alloy in short-transverse (S-T) direction was better than that of L-T direction. These results were mainly associated with the large number of coarse intermetallics caused by high Cu content in the L-T direction of alloy.


2011 ◽  
Vol 409 ◽  
pp. 67-70 ◽  
Author(s):  
Junya Nakamura ◽  
Kenji Matsuda ◽  
Tatsuo Sato ◽  
Calin D. Marioara ◽  
Sigmund J. Andersen ◽  
...  

In the present work, b’ phase in alloys Al -1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) was investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) to understand the effect of Ag addition. The b’ phase is rod-shape with the longest direction parallel to <001>Al. HRTEM images and SAED patterns obtained along the direction were similar for the b’ phase in both alloys. The unit cell of b’-phase in Ag-addition alloy is hexagonal with the same c-axis dimension as the Ag-free b’, but shorter a-axis. Ag was found in the composition of the rod-shaped precipitates in Ag-addition alloy by energy dispersive X-ray spectroscopy (EDS). In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). The Ag-containing atomic column was observed in every b’ unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free b’. The Ag-containing b’ rods have complicated domain structures. The interfaces of these particles are enriched with Ag atoms that occupy the lattice positions in the Al matrix. The occupancy of the Ag-containing atomic columns seem to vary both inside particles, as well as at the interfaces.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 172 ◽  
Author(s):  
Ming Li ◽  
Zhiming Shi ◽  
Xiufeng Wu ◽  
Huhe Wang ◽  
Yubao Liu

In this work, the microstructure of Al-5Fe-1.5Er alloy was characterized and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. The effect of microstructure on the behavior of crack initiation and propagation was investigated using in situ tensile testing. The results showed that when 1.5 wt.% Er was added in the Al-5Fe alloy, the microstructure consisted of α-Al matrix, Al3Fe, Al4Er, and Al3Fe + Al4Er eutectic phases. The twin structure of Al3Fe phase was observed, and the twin plane was {001}. Moreover, a continuous concave and convex interface structure of Al4Er was observed. Furthermore, Al3Fe was in the form of a sheet with a clear gap inside. In situ tensile tests of the alloy at room temperature showed that the crack initiation mainly occurred in the Al3Fe phase, and that the crack propagation modes included intergranular and trans-granular expansions. The crack trans-granular expansion was due to the strong binding between Al4Er phases and surrounding organization, whereas the continuous concave and convex interface structure of Al4Er provided a significant meshing effect on the matrix and the eutectic structure.


2016 ◽  
Vol 694 ◽  
pp. 111-115
Author(s):  
C.N. Aiza Jaafar ◽  
I. Zainol ◽  
Mohd Amirul Zalif Mohamad Sapri

The effect of thermal ageing on the properties and microstructure of Al-Mg-Si alloy was investigated. In this work, an extruded Al-6063 alloy samples were used as the main materials. In order to study the effect of thermal ageing, the alloy samples were solution treated at 530 °C and then quenched into water before artificially aged at elevated temperatures between 120 and 250 °C. The ageing response and mechanical properties was monitored by Vickers hardness and tensile tests, respectively. The analysis of surface fracture and microstructure of peak aged alloy were carried out by means of scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. Result shows that the highest hardness value and tensile properties is gained by the alloy that aged at 120 °C. It is found that increasing in hardness and strength values of the alloy are due to precipitates formation during thermal ageing. Fracture analysis on peak-aged condition indicates that the alloy having more ductility after thermal ageing. The result shows that the higher ageing temperature will lead to the higher ductility of the Al-6063 alloy, as a results the alloy’s strength is reduced.


2017 ◽  
Vol 50 (3) ◽  
pp. 795-804 ◽  
Author(s):  
Jiangkun Fan ◽  
Jinshan Li ◽  
Yudong Zhang ◽  
Hongchao Kou ◽  
Jaafar Ghanbaja ◽  
...  

For the β phase of Ti-5553-type metastable β-Ti alloys, striations in transmission electron microscopy (TEM) bright- and dark-field images have been frequently observed but their origin has not been sufficiently investigated. In the present work, this phenomenon is studied in depth from the macroscopic scale by neutron diffraction to the atomic scale by high-resolution TEM. The results reveal that the β phase contains homogeneously distributed modulated structures, intermediate between that of the β phase (cubic) and that of the α phase or the ω phase (hexagonal), giving rise to the appearance of additional diffraction spots at 1/2, 1/3 and 2/3 β diffraction positions. The intermediate structure between β and α is formed by the atomic displacements on each second {110}βplane in the \langle 1{\overline 1}0\rangle_{\beta} direction, whereas that between β and ω is formed by atomic displacements on each second and third {112}βplane in the opposite \langle 11{\overline 1}\rangle_{\beta } direction. Because of these atomic displacements, the {110}βand {112}βplanes become faulted, resulting in the streaking of β diffraction spots and the formation of extinction fringes in TEM bright- and dark-field images, the commonly observed striations. The present work reveals the origin of the striations and the intrinsic correlation with the additional electron reflections of the β phase.


2007 ◽  
Vol 26-28 ◽  
pp. 1279-1282 ◽  
Author(s):  
Koji Kato ◽  
Daisuke Hamatani ◽  
Kenji Matsuda ◽  
Tokimasa Kawabata ◽  
Yasuhiro Uetani ◽  
...  

It is known that the phase-decomposition process of 60/40 Cu-Zn alloy is so-called the bainitic transformation, and decomposition of α-phase from the β’-phase is as follow: β’ → α9R → αfcc. In this work,decomposition of α-phase from the β’ single phase of Cu-40.26at.%Zn alloy has been investigated by high-resolution transmission electron microscopy (HRTEM) to understand the phase transformation of this alloy. Especially, striations in the α-phase has been focused on the special feature for the change of the structure and hardening of this alloy during annealing. The result of a comparison between this alloy and the Si added alloy is also reported.


2013 ◽  
Vol 477-478 ◽  
pp. 1288-1292
Author(s):  
Bo Long Li ◽  
Tong Liu ◽  
Jie Yuan ◽  
Zuo Ren Nie

The high strength and low cost Ti-Fe based alloy was produced by double vacuum induction melting method followed by hot deformation. The microstructure has been investigated by Optical Microscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The microstructure of as-forged alloy is composed of α and β phase without the precipitation of TiFe intermetallic compound. The Ti-Fe-Al alloys show good comprehensive mechanical properties, demonstrating ultimate tensile strength of 1100MPa and elongation above10%. The results indicate the Fe is a good candidate for solution strengthening and simultaneously increasing ductility in titanium alloys. Effect of the Fe and Al elements on the microstructure and mechanical properties have been discussed.


2014 ◽  
Vol 794-796 ◽  
pp. 766-771 ◽  
Author(s):  
Jorge M. Cubero-Sesin ◽  
Masashi Watanabe ◽  
Makoto Arita ◽  
Zen Ji Horita

The aging behavior of a cast Al-2 wt.% Fe alloy processed by High-Pressure Torsion (HPT) at room temperature was studied by subsequent aging treatments at 200 °C. Observations by Transmission Electron Microscopy (TEM) revealed that the microstructure after HPT processing reached an ultrafine-grained level with an average grain size in the Al matrix of ~120 nm. The initial eutectic structures were fragmented into particles with sizes of less than 400 nm and partially dissolved in the matrix up to a supersaturated Fe content of ~1% as confirmed by X-Ray Diffraction (XRD) analysis. The peak-age condition was achieved within 0.25 h of aging, which provides the maximum hardness of ~200 HV. Analyses by high-resolution S/TEM show that round particles of Al6Fe with sizes of ~5-10 nm and semi-coherent with the matrix are the dominant precipitates in the peak-aged condition. The hardness increases by aging for 12 h above the as-HPT-processed level of 185 HV. The dominant precipitate phase transforms to Al3Fe in the over-aged condition with a loss of coherency during growth. Enhanced precipitation kinetics was observed because of high density of lattice defects induced by the HPT processing, which were also confirmed by significant recovery in the electrical conductivity of the samples after aging.


Author(s):  
W. H. Couts ◽  
R. R. Biederman

Super Waspaloy is an empirically derived thermomechanically processed version of Waspaloy. Microstructures were evaluated at steps in the hammer forge and heat treat sequence to study how the initial structure is derived. Foils taken from hot tensile, stress rupture, and elevated temperature low cycle fatigue bars were examined by transmission electron microscopy after exposure to temperature and stress. The purpose was to discover the microstructural features resistant to dislocation movement and to seek clues for further improvement of the alloy.


Sign in / Sign up

Export Citation Format

Share Document