scholarly journals β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 796
Author(s):  
Noyonika Mukherjee ◽  
Li Lin ◽  
Christopher J. Contreras ◽  
Andrew T. Templin

β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.

2013 ◽  
Vol 305 (4) ◽  
pp. E475-E484 ◽  
Author(s):  
Kathryn Aston-Mourney ◽  
Shoba L. Subramanian ◽  
Sakeneh Zraika ◽  
Thanya Samarasekera ◽  
Daniel T. Meier ◽  
...  

The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas.


2007 ◽  
Vol 30 (4) ◽  
pp. 92 ◽  
Author(s):  
K Potter ◽  
K Park

Background: Pancreatic islet transplantation offers improved glycemic control in type 1 diabetic patients above standard insulin therapy, ideally minimizing macro- and microvascular complications of diabetes mellitus. However success is limited thus far, with fewer than 10% of patients retaining insulin independence at two years post-transplantation. In addition to immune rejection, many non-immune factors may promote long-term graft secretory dysfunction and loss of viable graft mass. One such important non-immune factor may be the formation of islet amyloid, a pathologic lesion of the islet in type 2 diabetes that contributes to the progressive loss of b cells in that disease and that has been shown to form rapidly in human islets transplanted into NOD.scid mice. Amyloid deposits are composed primarily of the b cell secretory product islet amyloid polypeptide (IAPP), are cytotoxic, and develop in environments in which b cells are stressed. Heparin sulfate is used as an anti-coagulant in clinical islet transplantation and to prevent the instant blood-mediated inflammatory reaction (IBMIR), which occurs upon contact between islets and blood and may destroy a substantial proportion of the grafted islet mass. However, heparin is also known to stimulate amyloid fibril formation. Methods: To determine whether heparin may enhance amyloid formation in human islets and contribute to graft failure, we cultured isolated human islets in the presence or absence of heparin sulfate (42 and 420 units/ml) for 2 weeks in 11.1 mM glucose. Results: Histological assessment of sections of cultured islets for the presence of amyloid (by thioflavin S staining) revealed a marked, concentration-dependent increase in amyloid deposition following culture in the presence of heparin. Quantitative analysis of these sections showed that the proportion of islet area comprised of amyloid was increased approximately 2-fold (0.15%±0.12% vs 0.46%±0.15% of islet area) following culture in 42 units/ml heparin, and the proportion of islets in which amyloid was detectable (amyloid prevalence) was also increased (35%±24% vs 68%±10% of islets). At 420 units/ml heparin, the amyloid area was even greater (0.23%±0.15% vs 0.97%±0.42% of islet area) as was the amyloid prevalence (53%±29% vs 81%±14% of islets). To affirm that heparin can stimulate IAPP fibrillogenesis and enhance IAPP toxicity, we incubated synthetic human IAPP in the presence of heparin and measured amyloid formation in real time by thioflavin T fluorescence, and cell toxicity by Alamar blue viability assay in transformed rat (INS-1) ß-cell cultures. Heparin stimulated IAPP fibril formation and increased death of INS-1 cells exposed to IAPP (78.2%±10.9% vs 51.8%±12.2% of control viability), suggesting that heparin stimulates IAPP aggregation and toxicity. Remarkably, preliminary assessment of human islets cultured in heparin did not show increased islet cell death by TUNEL staining or loss of insulin immunostaining. Conclusion: In summary, heparin increases amyloid formation in cultured human islets. Although our preliminary data does not suggest that heparin-induced amyloid formation contributes to islet cell death, we speculate that heparin-induced amyloid formation may contribute to graft dysfunction and that caution should be used in the clinical application of this drug in islet transplantation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyoung Kim ◽  
Kihyoun Park ◽  
Min Jung Kim ◽  
Hyejin Lim ◽  
Kook Hwan Kim ◽  
...  

AbstractWe have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


Author(s):  
Helen Y. Wong ◽  
Queenie Hui ◽  
Zhenyue Hao ◽  
Garth L. Warnock ◽  
Minna Woo ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kongning Li ◽  
Deng Wu ◽  
Xi Chen ◽  
Ting Zhang ◽  
Lu Zhang ◽  
...  

Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.


2019 ◽  
Vol 20 (14) ◽  
pp. 3598 ◽  
Author(s):  
Giovanna Priante ◽  
Lisa Gianesello ◽  
Monica Ceol ◽  
Dorella Del Prete ◽  
Franca Anglani

Apoptotic cell death is usually a response to the cell’s microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities.


2011 ◽  
Vol 178 (6) ◽  
pp. 2632-2640 ◽  
Author(s):  
Catherine A. Jurgens ◽  
Mirna N. Toukatly ◽  
Corinne L. Fligner ◽  
Jayalakshmi Udayasankar ◽  
Shoba L. Subramanian ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andisheh Abedini ◽  
Annette Plesner ◽  
Ping Cao ◽  
Zachary Ridgway ◽  
Jinghua Zhang ◽  
...  

Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death.


2017 ◽  
Vol 114 (5) ◽  
pp. 1183-1188 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Li He ◽  
...  

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson’s disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L’s neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


2020 ◽  
Vol 105 (8) ◽  
pp. 2595-2605
Author(s):  
Sandra Ueberberg ◽  
Michael A Nauck ◽  
Waldemar Uhl ◽  
Chiara Montemurro ◽  
Andrea Tannapfel ◽  
...  

Abstract Background Amyloid deposits are a typical finding in pancreatic islets from patients with type 2 diabetes. Whether this is linked to the pathogenesis of type 2 diabetes is currently unknown. Therefore, we compared the occurrence of islet amyloid in patients with type 2 diabetes, diabetes secondary to pancreatic disorders, and nondiabetic individuals. Patients and methods Pancreatic tissue from 15 nondiabetic patients, 22 patients with type 2 diabetes, and 11 patients with diabetes due to exocrine pancreatic disorders (chronic pancreatitis, pancreatic carcinoma) were stained for insulin, amyloid, and apoptosis. β-cell area, amyloid deposits, and β-cell apoptosis were quantified by morphometric analysis. Results The proportion of islets containing amyloid deposits was significantly higher in both type 2 diabetes and diabetes due to exocrine pancreatic disorders than in healthy subjects. Islets with both amyloid and apoptosis were observed more frequently in type 2 diabetes and significantly more so in diabetes due to exocrine pancreatic disorders. In both diabetic groups, apoptotic ß-cells were found significantly more frequently in islets with more prominent amyloid deposits. Conclusions The occurrence of amyloid deposits in both type 2 diabetes and diabetes secondary to exocrine pancreatic disorders suggests that islet amyloid formation is a common feature of diabetes mellitus of different etiologies and may be associated with a loss of pancreatic ß-cells.


Sign in / Sign up

Export Citation Format

Share Document