scholarly journals Gut Microbiota Metabolites in Major Depressive Disorder. Deep Insights into Their Pathophysiological Role and Potential Translational Applications

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Miguel A. Ortega ◽  
Miguel Angel Alvarez-Mon ◽  
Cielo García-Montero ◽  
Oscar Fraile-Martinez ◽  
Luis G. Guijarro ◽  
...  

The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as “holobiont”. Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood–brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered Microbiota-Gut-Brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.

2016 ◽  
Vol 202 ◽  
pp. 254-257 ◽  
Author(s):  
Emiko Aizawa ◽  
Hirokazu Tsuji ◽  
Takashi Asahara ◽  
Takuya Takahashi ◽  
Toshiya Teraishi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier R. Caso ◽  
Karina S. MacDowell ◽  
Ana González-Pinto ◽  
Saínza García ◽  
Javier de Diego-Adeliño ◽  
...  

AbstractAlthough alterations in the gut microbiota have been linked to the pathophysiology of major depressive disorder (MDD), including through effects on the immune response, our understanding is deficient about the straight connection patterns among microbiota and MDD in patients. Male and female MDD patients were recruited: 46 patients with a current active MDD (a-MDD) and 22 in remission or with only mild symptoms (r-MDD). Forty-five healthy controls (HC) were also recruited. Psychopathological states were assessed, and fecal and blood samples were collected. Results indicated that the inducible nitric oxide synthase expression was higher in MDD patients compared with HC and the oxidative stress levels were greater in the a-MDD group. Furthermore, the lipopolysaccharide (an indirect marker of bacterial translocation) was higher in a-MDD patients compared with the other groups. Fecal samples did not cluster according to the presence or the absence of MDD. There were bacterial genera whose relative abundance was altered in MDD: Bilophila (2-fold) and Alistipes (1.5-fold) were higher, while Anaerostipes (1.5-fold) and Dialister (15-fold) were lower in MDD patients compared with HC. Patients with a-MDD presented higher relative abundance of Alistipes and Anaerostipes (1.5-fold) and a complete depletion of Dialister compared with HC. Patients with r-MDD presented higher abundance of Bilophila (2.5-fold) compared with HC. Thus, the abundance of bacterial genera and some immune pathways, both with potential implications in the pathophysiology of depression, appear to be altered in MDD, with the most noticeable changes occurring in patients with the worse clinical condition, the a-MDD group.


Author(s):  
Paweł Liśkiewicz ◽  
Mariusz Kaczmarczyk ◽  
Błażej Misiak ◽  
Michał Wroński ◽  
Agata Bąba-Kubiś ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Zhenhuang Zhuang ◽  
Ruotong Yang ◽  
Wenxiu Wang ◽  
Lu Qi ◽  
Tao Huang

Abstract Background Growing evidence has shown that alterations in the gut microbiota composition were associated with a variety of neuropsychiatric conditions. However, whether such associations reflect causality remains unknown. We aimed to reveal the causal relationships among gut microbiota, metabolites, and neuropsychiatric disorders including Alzheimer’s disease (AD), major depressive disorder (MDD), and schizophrenia (SCZ). Methods A two-sample bi-directional Mendelian randomization analysis was performed by using genetic variants from genome-wide association studies as instrumental variables for gut microbiota, metabolites, AD, MDD, and SCZ, respectively. Results We found suggestive associations of host-genetic-driven increase in Blautia (OR, 0.88; 95%CI, 0.79–0.99; P = 0.028) and elevated γ-aminobutyric acid (GABA) (0.96; 0.92–1.00; P = 0.034), a downstream product of Blautia-dependent arginine metabolism, with a lower risk of AD. Genetically increased Enterobacteriaceae family and Enterobacteriales order were potentially associated with a higher risk of SCZ (1.09; 1.00–1.18; P = 0.048), while Gammaproteobacteria class (0.90; 0.83–0.98; P = 0.011) was related to a lower risk for SCZ. Gut production of serotonin was potentially associated with an increased risk of SCZ (1.07; 1.00–1.15; P = 0.047). Furthermore, genetically increased Bacilli class was related to a higher risk of MDD (1.07; 1.02–1.12; P = 0.010). In the other direction, neuropsychiatric disorders altered gut microbiota composition. Conclusions These data for the first time provide evidence of potential causal links between gut microbiome and AD, MDD, and SCZ. GABA and serotonin may play an important role in gut microbiota-host crosstalk in AD and SCZ, respectively. Further investigations in understanding the underlying mechanisms of associations between gut microbiota and AD, MDD, and SCZ are required.


2020 ◽  
Author(s):  
Satyajit Koley ◽  
Arindam Sur

Abstract Background Major depression, a disease status as well as a psychosocial burden. High Salivary alpha amylase (sAA) level and dyslipidaemia have been observed in few occasions of Major Depressive Disorder (MDD) patients. Results Drug naïve newly diagnosed MDD patients, with gradual improvement of their depressive status [assessed by HDR-S (p < 0.001) and CGI-S(p < 0.001) at 6 and 12 weeks both] by therapeutic interventions showed significant decrease in sAA level (p < 0.001) and increasing and decreasing trend in HDL-C (p < 0.001) and LDL-C (p = 0.004) level respectively. Single significant negative correlation found between HDL-C level and sAA level (r = − 0.291, p = 0.04) after 3 months of treatment. Conclusion sAA and serum lipid profile can be used as biochemical indicators in Major Depressive Disorder patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
M. Nazmul Huda ◽  
Myungsuk Kim ◽  
Brian J. Bennett

Mounting evidence suggested that the gut microbiota has a significant role in the metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which has a complex etiology that includes obesity and chronic low-grade inflammation, is modulated by the gut microbiota and microbial metabolites. Current literature supports that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this review, we critically summarize the recent findings regarding the role of gut microbiota in T2D. Beyond these associative studies, we focus on the causal relationship between microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic supplementation, and the potential underlying mechanisms such as byproducts of microbial metabolism. These microbial metabolites are small molecules that establish communication between microbiota and host cells. We critically summarize the associations between T2D and microbial metabolites such as short-chain fatty acids (SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host genetic architecture and the epigenome influence the microbial composition and thus how the gut microbiota may explain part of the missing heritability of T2D found by GWAS analysis. We also discuss future directions in this field and how approaches such as FMT, prebiotics, and probiotics supplementation are being considered as potential therapeutics for T2D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jane A. Foster ◽  
Glen B. Baker ◽  
Serdar M. Dursun

Major depressive disorder (MDD) is a prominent cause of disability worldwide. Current antidepressant drugs produce full remission in only about one-third of MDD patients and there are no biomarkers to guide physicians in selecting the best treatment for individuals. There is an urgency to learn more about the etiology of MDD and to identify new targets that will lead to improved therapy and hopefully aid in predicting and preventing MDD. There has been extensive interest in the roles of the immune system and the gut microbiome in MDD and in how these systems interact. Gut microbes can contribute to the nature of immune responses, and a chronic inflammatory state may lead to increased responsiveness to stress and to development of MDD. The gut microbiome-immune system-brain axis is bidirectional, is sensitive to stress and is important in development of stress-related disorders such as MDD. Communication between the gut and brain involves the enteric nervous system (ENS), the autonomic nervous system (ANS), neuroendocrine signaling systems and the immune system, and all of these can interact with the gut microbiota. Preclinical studies and preliminary clinical investigations have reported improved mood with administration of probiotics and prebiotics, but large, carefully controlled clinical trials are now necessary to evaluate their effectiveness in treating MDD. The roles that several gut microbe-derived molecules such as neurotransmitters, short chain fatty acids and tryptophan play in MDD are reviewed briefly. Challenges and potential future directions associated with studying this important axis as it relates to MDD are discussed.


Author(s):  
Igor Łoniewski ◽  
Agata Misera ◽  
Karolina Skonieczna-Żydecka ◽  
Mariusz Kaczmarczyk ◽  
Karolina Kaźmierczak-Siedlecka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document