scholarly journals A 21 m Operation Range RFID Tag for “Pick to Light” Applications with a Photovoltaic Harvester

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1013
Author(s):  
Aingeru Astigarraga ◽  
Alberto Lopez-Gasso ◽  
Diego Golpe ◽  
Andoni Beriain ◽  
Hector Solar ◽  
...  

In this paper, a novel Radio-Frequency Identification (RFID) tag for “pick to light” applications is presented. The proposed tag architecture shows the implementation of a novel voltage limiter and a supply voltage (VDD) monitoring circuit to guarantee a correct operation between the tag and the reader for the “pick to light” application. The feasibility to power the tag with different photovoltaic cells is also analyzed, showing the influence of the illuminance level (lx), type of source light (fluorescent, LED or halogen) and type of photovoltaic cell (photodiode or solar cell) on the amount of harvested energy. Measurements show that the photodiodes present a power per unit package area for low illuminance levels (500 lx) of around 0.08 μW/mm2, which is slightly higher than the measured one for a solar cell of 0.06 μW/mm2. However, solar cells present a more compact design for the same absolute harvested power due to the large number of required photodiodes in parallel. Finally, an RFID tag prototype for “pick to light” applications is implemented, showing an operation range of 3.7 m in fully passive mode. This operation range can be significantly increased to 21 m when the tag is powered by a solar cell with an illuminance level as low as 100 lx and a halogen bulb as source light.

2020 ◽  
Vol 29 (14) ◽  
pp. 2050234 ◽  
Author(s):  
Peiqing Han ◽  
Zhaofeng Zhang ◽  
Niansong Mei

A reconfigurable architecture is presented to be compatible with conventional passive operating mode and active mode for ultrahigh frequency (UHF) and radio-frequency identification (RFID) tag. The transceiver with frequency locked on-chip oscillator is proposed to increase the read range of RFID system and the lifetime of tag. The transceiver is fabricated in 0.18[Formula: see text][Formula: see text]m standard CMOS process with the active area of 0.246[Formula: see text]mm2. For passive mode, the sensitivity of tag is [Formula: see text][Formula: see text]dBm. For the active mode, the sensitivity is [Formula: see text][Formula: see text]dBm only consuming 1.2[Formula: see text][Formula: see text]W under the supply voltage of 0.8[Formula: see text]V. The output power is [Formula: see text][Formula: see text]dBm for active transmitting mode and the power consumption is 450[Formula: see text][Formula: see text]W under the supply voltage of 1[Formula: see text]V.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Author(s):  
Shahid Habib ◽  
Amjad Ali ◽  
Ghaffer Iqbal Kiani ◽  
Wagma Ayub ◽  
Syed Muzahir Abbas ◽  
...  

Abstract This paper presents a polarization-independent 11-bit chipless RFID tag based on frequency-selective surface which has been designed for encoding and relative humidity (RH) sensing applications. The 10 exterior U-shaped resonators are used for item encoding whereas Kapton has been incorporated with the interior resonator for RH sensing. This radio-frequency identification (RFID) tag operates in S- and C-frequency bands. The proposed design offers enhanced fractional bandwidth up to 88% with the density of 4.46 bits/cm2. Both single- and dual-layer tags have been investigated. The simulated results are in good agreement with measured results and a comparison with existing literature is presented to show the performance. Simple geometry, high code density, large frequency signature bandwidth, high magnitude bit, high radar cross-section, and angular stability for more than 75° are the unique outcomes of the proposed design. In addition, RH sensing has been achieved by integrating the Kapton on the same RFID tag.


2013 ◽  
Vol 340 ◽  
pp. 493-496
Author(s):  
Gang Ye

Using energy-harvesting technology can make the work scope of passive radio frequency identification tag to achieve the maximum .The study put forward to collecting light from the solar cell share tag antenna area, that provides the power source except from the reader receive to electromagnetic power ,which to activate the label circuit. In order to make solar cell to the influence of the tag antenna to minimum ,so optimize it with electromagnetic simulation on its position .The collected dc power could convert into the radio frequency with the efficient E-class oscillator , as well as it could flow into the radio frequency identification tag terminal with the aid of the proper designed coupled circuit .The oscillation frequency is selected on the principle of not affecting the operation of label back scattering .The presented oscillator is showed in the simulations .The E-class oscillator is used together with other forms of collection technology ,such as thermoelectric collect machine.


2019 ◽  
Vol 8 (1) ◽  
pp. 13-19
Author(s):  
Meli Mildawati ◽  
Wildian Wildian

Sistem pengaman sepeda motor menggunakan radio frequency identification (RFID) dan notifikasi melalui handphone yang dikontrol dengan modul Arduino Uno telah dirancang bangun. RFID terdiri dari sebuah RFID tag dan RFID reader. RFID tag yang memiliki kode yang berbeda-beda, digunakan sebagai kunci untuk menghidupkan sepeda motor setelah kunci kontak digunakan. RFID reader dapat membaca tag pada jarak maksimal 1,26 cm. Sepeda motor yang dihidupkan tanpa menggunakan RFID tag atau RFID tag tidak sesuai menyebabkan aktifnya reed switch pada pelek roda depan. Ketika roda telah berputar sebanyak empat kali, maka alarm aktif dan GSM SIM 800L mengirimkan notifikasi berupa SMS sebanyak satu kali dan misscall sebanyak tiga kali ke nomor handphone pemilik sepeda motor. Waktu delay rata-rata SMS dan miscall berturut-turut adalah 5,42 s, 8,62 s, 61,14 s dan 113,16 s. Kata kunci: sistem pengaman sepeda motor, RFID, Arduino Uno , reed switch, GSM SIM 800L


2008 ◽  
Vol 07 (01) ◽  
pp. 9-14 ◽  
Author(s):  
Selwyn Piramuthu

Radio Frequency Identification (RFID) is promising, as a technique, to enable tracking of essential information about objects as they pass through supply chains. Information thus tracked can be utilised to efficiently operate the supply chain. Effective management of the supply chain translates to huge competitive advantage for the firms involved. Among several issues that impede seamless integration of RFID tags in a supply chain, one of the problems encountered while reading RFID tags is that of collision, which occurs when multiple tags transmit data to the same receiver slot. Data loss due to collision necessitates re-transmission of lost data. We consider this problem when Framed Slotted ALOHA protocol is used. Using machine learning, we adaptively configure the number of slots per frame to reduce the number of collisions while improving throughput.


2017 ◽  
Vol 8 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Greg Gogolin ◽  
Erin Gogolin

The proliferation of mobile devices such as smart phones and other handheld appliances has stimulated the development of a broad range of functionality, including medical, retail, gaming, and personal applications. Technology that has been leveraged to enable many of these uses includes embedded mobile, radio frequency identification, location based services, and augmented reality. Embedded mobile refers to preprogrammed tasks that are performed on a mobile device. Personal care and monitoring is one of the most common uses of embedded mobile. RFID involves communication between a tag and a reader. Mobile RFID extends the technology by tagging the mobile device with an RFID tag to perform tasks on the device. Near field communication is frequently utilized in mobile payment systems. Advertisers find this of significant use in focusing advertisements based on the location of an individual. Augmented reality involves the use of computer generated or enhanced sensory input such as audio and visual components to enhance the perception of reality.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


2020 ◽  
pp. 004051752094890
Author(s):  
Yong Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Xudong Yang

This paper describes the design of a novel ultrahigh frequency radio frequency identification (UHF RFID) tag thread that mainly consisted of the common yarn and the normal mode helix dipole antenna. The linear dipole antenna for the UHF RFID tag thread was too long to miniaturize the tag. In order to maximize the read performance and miniaturize the size of the tag, the basic antenna structure parameters, such as the helical pitch and single arm length, were optimized by analyzing the radiation parameter S11 of the normal mode helix dipole antenna based on simulation experiments. The simulation experiments started with optimizing the single arm length to obtain the minimum of the S11 parameter at resonant frequency, then the helical pitch was further optimized to limit the resonant frequency to the UHF range. The simulation results showed the resonant frequency rises with an increase of helical pitch and declines with an increase of single arm length. Furthermore, a series of UHF RFID tag threads with good performance from the simulation cases were prepared, and the performance of the optimized tag was validated. Generally, the UHF RFID tag thread with optimized helix dipole antenna could reduce the axial length of the tag by 57% and improve the reading range by 500%, and its performance was greatly superior to that of the UHF RFID tag thread with the classical linear dipole antenna.


Sign in / Sign up

Export Citation Format

Share Document