scholarly journals Process Intensification of Chemical Exchange Method for Boron Isotope Separation Using Micro-Channel Distillation Technology

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1222
Author(s):  
Yin Tang ◽  
Yongjie Zheng ◽  
Jingzhi Tian ◽  
Jing Sun

A micro-channel distillation device was used for the process intensification method to separate boron isotopes, 10B and 11B. Three-dimensional (3D) printing technology was introduced to manufacture the micro-channel device, which used the chemical exchange method with anisole as the donor to separate the boron isotopes. This device was tested in total reflux mode, and the height of an equivalent theoretical plate of the micro-channel distillation equipment was reduced to 1.56 cm. The accurate control of pressure and temperature, as well as the flow rate of the complex, were factors that affected separation ability. Thus, for process intensification, this micro-channel distillation device can be operated horizontally and connected in series into similar modules to effectively improve separation efficiency and reduce the size of the equipment.

2012 ◽  
Vol 442 ◽  
pp. 62-66 ◽  
Author(s):  
Jin Cui ◽  
Wei Jiang Zhang ◽  
Feng Hai Miao

Abstract The enrichment ratio of 10B in the top and bottom component with the dynamic change of feed fluctuation and periodic wave on the separation process of the boron isotopes separation by chemical exchange method had been studied and a dynamic model was set up. The results indicate that when the feed amount is in the column load limit, the dynamic responses of top and bottom separation plate match well with the condition when feed flow rate is invariable. While when the exchange column is overloaded, the feed flow rate variation influences 10B abundance ratio greatly. With the increasing of the fluctuation period, the longer the wave period, the bigger the amplitude around the average line in top product. However, big increase of feed fluctuation will reduce the 10B abundance ratio of bottom product.


2014 ◽  
Vol 457 (2) ◽  
pp. 141-143
Author(s):  
A. V. Lizunov ◽  
E. I. Goryunov ◽  
I. B. Goryunova ◽  
A. V. Khoroshilov ◽  
A. A. Semenov ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Umair Jamil Ur Rahman ◽  
Artur Krzysztof Pozarlik ◽  
Thomas Tourneur ◽  
Axel de Broqueville ◽  
Juray De Wilde ◽  
...  

In this paper, an intensified spray-drying process in a novel Radial Multizone Dryer (RMD) is analyzed by means of CFD. A three-dimensional Eulerian–Lagrangian multiphase model is applied to investigate the effect of solids outlet location, relative hot/cold airflow ratio, and droplet size on heat and mass transfer characteristics, G-acceleration, residence time, and separation efficiency of the product. The results indicate that the temperature pattern in the dryer is dependent on the solids outlet location. A stable, symmetric spray behavior with maximum evaporation in the hot zone is observed when the solids outlet is placed at the periphery of the vortex chamber. The maximum product separation efficiency (85 wt %) is obtained by applying high G-acceleration (at relative hot/cold ratio of 0.75) and narrow droplet size distribution (45–70 µm). The separation of different sized particles with distinct drying times is also observed. Smaller particles (<32 µm) leave the reactor via the gas outlet, while the majority of big particles leave it via the solids outlet, thus depicting in situ particle separation. The results revealed the feasibility and benefits of a multizone drying operation and that the RMD can be an attractive solution for spray drying technology.


Author(s):  
Yanxi Song ◽  
Jinliang Xu

We study the production and motion of monodisperse double emulsions in microfluidics comprising series co-flow capillaries. Both two and three dimensional simulations are performed. Flow was determined by dimensionless parameters, i.e., Reynolds number and Weber number of continuous and dispersed phases. The co-flow generated droplets are sensitive to the Reynolds number and Weber number of the continuous phase, but insensitive to those of the disperse phase. Because the inner and outer drops are generate by separate co-flow processes, sizes of both inner and outer drops can be controlled by adjusting Re and We for the continuous phase. Meanwhile, the disperse phase has little effect on drop size, thus a desirable generation frequency of inner drop can be reached by merely adjusting flow rate of the inner fluid, leading to desirable number of inner drops encapsulated by the outer drop. Thus highly monodisperse double emulsions are obtained. It was found that only in dripping mode can droplet be of high mono-dispersity. Flow begins to transit from dripping regime to jetting regime when the Re number is decreased or Weber number is increased. To ensure that all the droplets are produced over a wide range of running parameters, tiny tapered tip outlet for the disperse flow should be applied. Smaller the tapered tip, wider range for Re and we can apply.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


2000 ◽  
Author(s):  
H. J. Kang ◽  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Abstract The velocity distributions inside a centrifugal separator with outside and inside diameters of 152.4 mm (6″) and 76.2 mm (3″), respectively, have been investigated experimentally and numerically to obtain optimum separation efficiency. Two 12.7 mm (1/2-inch) holes were drilled on the external surface of the separator to measure the velocity distribution in the separator. Two direction velocities (tangential direction along the cylinder surface and axial along the vertical direction) were measured to compare with the numerical simulation results. A 6060P Pitot probe was employed to obtain the velocity distribution. The dust samples (a mixture of steel particle and dust) from the dust collection box were analyzed using a Phillips XL30 Scanning Electron Microscope. FLUENT code is used as the numerical solver for this fully three-dimensional problem. The fluid flow in the separator is assumed to be steady and incompressible turbulent flow. The standard k–ε model was employed in this study. Non-uniform, unstructured grids are chosen to discretize the entire computation domain. Almost 100,000 cells are used to discretize the whole separator. The constant velocity profile is imposed on the inlet plane. The pressure boundary condition is adopted at outlet plane. Comparing the velocity distribution and separation efficiency from the experiment and the numerical modeling shows that the experimental results and the estimated data agree fairly well and with a deviation within ±10%.


Author(s):  
Akram Ghanem ◽  
Thierry Lemenand ◽  
Dominique Della Valle ◽  
Hassan Peerhossaini

A numerical investigation of chaotic laminar flow and heat transfer in isothermal-wall square-channel configurations is presented. The computations, based on a finite-volume method with the SIMPLEC algorithm, are conducted in terms of Péclet numbers ranging from 7 to 7×105. The geometries, based on the split-and-recombine (SAR) principle, are first proposed for micromixing purposes, and are then optimized and scaled up to three-dimensional minichannels with 3-mm sides that are capable of handling industrial fluid manipulation processes. The aim is to assess the feasibility of this mass- and heat-transfer technique for out-of-laboratory commercial applications and to compare different configurations from a process intensification point of view. The effects of the geometry on heat transfer and flow characteristics are examined. Results show that the flux recombination phenomenon mimicking the baker’s transform in the SAR-1 and SAR-2 configurations produces chaotic structures and promotes mass transfer. This phenomenon also accounts for higher convective heat transfer exemplified by increased values of the Nusselt number compared to the chaotic continuous-flow configuration and the baseline plain square-duct geometry. Energy expenditures are explored and the overall heat transfer enhancement factor for equal pumping power is calculated. The SAR-2 configuration reveals superior heat-transfer characteristics, enhancing the global gain by up to 17-fold over the plain duct heat exchanger.


1995 ◽  
Vol 110 (2) ◽  
pp. 220-227 ◽  
Author(s):  
David A. White ◽  
Fathurrachman

2008 ◽  
Author(s):  
Mohammad Hadi Bordbar ◽  
Timo Hyppa¨nen

This paper describes the theoretical bases of the Radiative Exchange Method, a new numerical method for simulating radiation heat transfer. By considering radiative interaction between all points of the geometry and solving the radiation balance equation in a mesh structure coarser than the structure used in computational fluid flow calculation, this method is able to simulate radiative heat transfer in arbitrary 3D space with absorbing, emitting and scattering media surrounded by emitting, absorbing and reflecting surfaces. A new concept is introduced, that of the exchange factors between the different elements that are necessary for completing the radiative balance equation set. Using this method leads to a set of algebraic equations for the radiative outgoing power from each coarse cell being produced and the result of this set of equations was then used to calculate the volumetric radiative source term in the fine cell structure. The formulation of the exchange factor for a three-dimensional state and also a mesh size analysis that was conducted to optimize the accuracy and runtime are presented. The results of this model to simulate typical 3D furnace shape geometry, is verified by comparison with those of other numerical methods.


Author(s):  
Yan Li ◽  
Shuchao Zhang ◽  
Ning Mei

In this paper, the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube was visualized by the three-dimensional ultra-microscope system. The coupling relationship between the driving force and the flow was studied by Onsager reciprocal relations. The results show that the formation of the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube is impacted by the combining effect of several factors, such as the capillary pressure, wettability, temperature, and bubbles.


Sign in / Sign up

Export Citation Format

Share Document