scholarly journals Cecal Microbiome Analyses on Wild Japanese Rock Ptarmigans (Lagopus muta japonica) Reveals High Level of Coexistence of Lactic Acid Bacteria and Lactate-Utilizing Bacteria

2018 ◽  
Vol 6 (3) ◽  
pp. 77 ◽  
Author(s):  
Atsushi Ueda ◽  
Atsushi Kobayashi ◽  
Sayaka Tsuchida ◽  
Takuji Yamada ◽  
Koichi Murata ◽  
...  

Preservation of indigenous gastrointestinal microbiota is critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we compared the cecal microbial composition of wild living Japanese rock ptarmigans (Lagopus muta japonica) in different locations of Japanese mountains, and the dominant cecal microbial structure of wild Japanese rock ptarmigans is elucidated. Coriobacteraceae and Lachnospraceae were the two dominant bacterial families in all samples analyzed. At the genus level, 10 genera Olsenella, Actinomyces, Megasphaera, Slackia, Cloacibacillus, Bifidobacterium,Escherichia,Dialister, Megamonas, and Bilophila were dominant. These results reveal the high level of coexistence of lactic acid bacteria (Olsenella and Bifidobacterium) and lactate-utilizing bacteria (Megasphaera). This coexistence should be taken into account for the successful breeding of captive Japanese rock ptarmigans in the national conservation program.

2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


2017 ◽  
Vol 4 (2) ◽  
pp. 263
Author(s):  
Ida Ayu Ketut Ariningsih ◽  
Yan Ramona ◽  
Nyoman Semadi Antara

Candidacies in female reproductive tract are mainly caused by Candida albicans. This infection often causes serious problems, particularly on their reproductive tract (genital part). Until recently, control of this infection has relied on the use of antibiotics. However due to numerous bad side effects of antibiotics, lactic acid bacteria have been proposed as an alternative method to control the growth of Candida albicans. Therefore, this research was aimed to isolate, screen, and characterize lactic acid bacterial isolates (LAB) antagonistic against Candida albicans (the causative agent of candidacies infection in reproductive tract of human). LABs were isolated from various fermented foods, such as tape ketan and kimchi. Isolation of LABs was conducted by applying dilution and spread plate method on MRS agar medium supplemented with BCP indicator to distinguish LABs from non acid-producing bacteria. Colonies with indication to produce acid were screened for antagonistic activity against C. albicans on MRS agar and followed by characterization of those isolates (Gram stain, catalase production test, oxydase production, gas production test, resistance test to low pH conditions and to high level of NaDC (sodium deoxicolic), and test for ability to convert colic acid (CA) into deoxicolic acid (DCA)). The results showed that 46 LAB isolates were successfully isolated from samples of tape ketan and kimchi. Among those, 7 isolates showed antagonistic activity against C. albicans in in vitro tests. All these 7 candidates were also found to be resistance to low pH conditions (up to pH 2) and to high level of NaDC (up to 0.6 mM). Four most potential isolates were further testes for ability to convert colic acid into deoxycolic acid and none showed positive result, indicating that they all showed initial potential and safe for future human probiotic development (especially to be used to treat patients infected by C. albicans).


2017 ◽  
Vol 65 ◽  
pp. 178-185 ◽  
Author(s):  
O. Ashayerizadeh ◽  
B. Dastar ◽  
F. Samadi ◽  
M. Khomeiri ◽  
A. Yamchi ◽  
...  

Author(s):  
Anik Ma'unatin ◽  
Harijono Harijono ◽  
Elok Zubaidah ◽  
Muhaimin Rifa'i

Background and Objectives: Lontar (Borassus flabellifer L.) is widely grown in Indonesia and one of its products is palm sap. Palm sap contains a high level of sugar, making it suitable as a medium to increase the lactic acid bacteria (LAB) production of exopolysaccharides (EPS). This study aimed to isolate the EPS-producing LAB from palm sap and evaluate its EPS production. LAB isolation was carried out on MRS agar containing 0.5% CaCO3 . Materials and Methods: The screening and production of EPS were carried out on MRS media supplemented with 10% sucrose. The molecular identification of the selected EPS-producing LAB was based on 16S rDNA. A quantitative analysis of EPS polymer dry mass and total sugar was conducted using one-way ANOVA. Results: In this study, five EPS-producing LABs were found: Fructobacillus fructosus N4, Leuconostoc mesenteroides N5, Leuconostoc mesenteroides N7, Leuconostoc mesenteroides N9, and Fructobacillus fructosus N10. The highest EPS yield in liquid media was 10.997 ± 1.591 g/L by Leuconostoc mesenteroides N7, whereas the lowest was 4.505 ± 0.459 g/L by Fructobacillus fructosus N10. Conclusion: This study found Fructobacillus fructosus strains as EPS producers that have never been reported before.


2007 ◽  
Vol 73 (19) ◽  
pp. 6262-6269 ◽  
Author(s):  
Ilse Scheirlinck ◽  
Roel Van der Meulen ◽  
Ann Van Schoor ◽  
Marc Vancanneyt ◽  
Luc De Vuyst ◽  
...  

ABSTRACT A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.


2014 ◽  
Vol 80 (7) ◽  
pp. 2050-2061 ◽  
Author(s):  
Margherita Cruciata ◽  
Ciro Sannino ◽  
Danilo Ercolini ◽  
Maria L. Scatassa ◽  
Francesca De Filippis ◽  
...  

ABSTRACTThe microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB),Streptococcus thermophilusand some lactobacilli, mainlyLactobacillus crispatusandLactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, asEnterococcus casseliflavus,Enterococcus faecium,Enterococcus faecalis,Enterococcus lactis,Lactobacillus delbrueckii, andStreptococcus thermophilus, while the other strains, all belonging to the genusEnterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions.


2011 ◽  
Vol 268-270 ◽  
pp. 1675-1680
Author(s):  
Lun Wen Lu

In this study, it is based on the processing theory and equipments for Chinese fermented meat products and western fermented meat products. The result shows that lactic acid bacteria in the process of manufacturing fermented hams have always been in the state of dominant bacteria and maintained a high level. From whether nitrites can decompose protein and fat, etc. aspects conduct strain screenings, and the result shows that, LP and Pc can be used as starters of hams. Although the lactic acid streptococci (St) and La do not break down fat and protein, their resistances to salts and nitrites both are very poor, not suitable for starters of manufactured meats.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 939
Author(s):  
Ewa Baranowska-Wójcik ◽  
Klaudia Gustaw ◽  
Dominik Szwajgier ◽  
Patryk Oleszczuk ◽  
Bożena Pawlikowska-Pawlęga ◽  
...  

Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.


2005 ◽  
Vol 71 (5) ◽  
pp. 2267-2277 ◽  
Author(s):  
Ole Højberg ◽  
Nuria Canibe ◽  
Hanne Damgaard Poulsen ◽  
Mette Skou Hedemann ◽  
Bent Borg Jensen

ABSTRACT Dietary doses of 2,500 ppm ZnO-Zn reduced bacterial activity (ATP accumulation) in digesta from the gastrointestinal tracts of newly weaned piglets compared to that in animals receiving 100 ppm ZnO-Zn. The amounts of lactic acid bacteria (MRS counts) and lactobacilli (Rogosa counts) were reduced, whereas coliforms (MacConkey counts) and enterococci (Slanetz counts, red colonies) were more numerous in animals receiving the high ZnO dose. Based on 16S rRNA gene sequencing, the colonies on MRS were dominated by three phylotypes, tentatively identified as Lactobacillus amylovorus (OTU171), Lactobacillus reuteri (OTU173), and Streptococcus alactolyticus (OTU180). The colonies on Rogosa plates were dominated by the two Lactobacillus phylotypes only. Terminal restriction fragment length polymorphism analysis supported the observations of three phylotypes of lactic acid bacteria dominating in piglets receiving the low ZnO dose and of coliforms and enterococci dominating in piglets receiving the high ZnO dose. Dietary doses of 175 ppm CuSO4-Cu also reduced MRS and Rogosa counts of stomach contents, but for these animals, the numbers of coliforms were reduced in the cecum and the colon. The influence of ZnO on the gastrointestinal microbiota resembles the working mechanism suggested for some growth-promoting antibiotics, namely, the suppression of gram-positive commensals rather than potentially pathogenic gram-negative organisms. Reduced fermentation of digestible nutrients in the proximal part of the gastrointestinal tract may render more energy available for the host animal and contribute to the growth-promoting effect of high dietary ZnO doses. Dietary CuSO4 inhibited the coliforms and thus potential pathogens as well, but overall the observed effect of CuSO4 was limited compared to that of ZnO.


Sign in / Sign up

Export Citation Format

Share Document