scholarly journals Topography and Expansion Patterns at the Biofilm-Agar Interface in Bacillus subtilis Biofilms

2020 ◽  
Vol 9 (1) ◽  
pp. 84
Author(s):  
Sarah Gingichashvili ◽  
Osnat Feuerstein ◽  
Doron Steinberg

Bacterial biofilms are complex microbial communities which are formed on various natural and synthetic surfaces. In contrast to bacteria in their planktonic form, biofilms are characterized by their relatively low susceptibility to anti-microbial treatments, in part due to limited diffusion throughout the biofilm and the complex distribution of bacterial cells within. The virulence of biofilms is therefore a combination of structural properties and patterns of adhesion that anchor them to their host surface. In this paper, we analyze the topographical properties of Bacillus subtilis’ biofilm-agar interface across different growth conditions. B. subtilis colonies were grown to maturity on biofilm-promoting agar-based media (LBGM), under standard and stress-inducing growth conditions. The biofilm-agar interface of the colony type biofilms was modeled using confocal microscopy and computational analysis. Profilometry data was obtained from the macrocolonies and used for the analysis of surface topography as it relates to the adhesion modes present at the biofilm-agar interface. Fluorescent microspheres were utilized to monitor the expansion patterns present at the interface between the macrocolonies and the solid growth medium. Contact surface analysis reveals topographical changes that could have a direct effect on the adhesion strength of the biofilm to its host surface, thus affecting its potential susceptibility to anti-microbial agents. The topographical characteristics of the biofilm-agar interface partially define the macrocolony structure and may have significant effects on bacterial survival and virulence.

1986 ◽  
Vol 32 (3) ◽  
pp. 254-258 ◽  
Author(s):  
Catherine Chevanet ◽  
Françoise Besson ◽  
Georges Michel

Bacillomycin L is produced by Bacillus subtilis NCIB 8872 in the stationary phase; it is excreted into the culture medium, without prior accumulation in the bacterial cells. The production of bacillomycin L is largely dependent on the composition of the culture medium. The action of specific inhibitors of sporulation, netropsin and diethyl malonate, on antibiotic synthesis is dependent on the composition of the culture medium. Although they occurred at the same time, there appears to be no direct correlation between sporulation and antibiotic synthesis.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 221
Author(s):  
Ozlem Altay ◽  
Cheng Zhang ◽  
Hasan Turkez ◽  
Jens Nielsen ◽  
Mathias Uhlén ◽  
...  

Burkholderia cenocepacia is among the important pathogens isolated from cystic fibrosis (CF) patients. It has attracted considerable attention because of its capacity to evade host immune defenses during chronic infection. Advances in systems biology methodologies have led to the emergence of methods that integrate experimental transcriptomics data and genome-scale metabolic models (GEMs). Here, we integrated transcriptomics data of bacterial cells grown on exponential and biofilm conditions into a manually curated GEM of B. cenocepacia. We observed substantial differences in pathway response to different growth conditions and alternative pathway susceptibility to extracellular nutrient availability. For instance, we found that blockage of the reactions was vital through the lipid biosynthesis pathways in the exponential phase and the absence of microenvironmental lysine and tryptophan are essential for survival. During biofilm development, bacteria mostly had conserved lipid metabolism but altered pathway activities associated with several amino acids and pentose phosphate pathways. Furthermore, conversion of serine to pyruvate and 2,5-dioxopentanoate synthesis are also identified as potential targets for metabolic remodeling during biofilm development. Altogether, our integrative systems biology analysis revealed the interactions between the bacteria and its microenvironment and enabled the discovery of antimicrobial targets for biofilm-related diseases.


1996 ◽  
Vol 42 (6) ◽  
pp. 533-538 ◽  
Author(s):  
A. R. Podile ◽  
A. P. Prakash

A biocontrol rhizobacterial strain of Bacillus subtilis AF 1 grown for 6 h was coinoculated with Aspergillus niger at different time intervals and microscopic observations revealed adherence of bacterial cells to the fungal mycelium. Bacterial cells multiplied in situ and colonized the mycelial surface. Growth of AF 1 resulted in damage to the cell wall, followed by lysis. AF 1 inoculation into media containing A. niger at 0, 6, and 12 h suppressed >90% fungal growth, while in 18- and 24-h cultures fungal growth inhibition was 70 and 56%, respectively, in terms of dry weight. In dual culture the fungal growth was not accompanied by formation of spores. The mycelial preparation of A. niger as principal carbon source supported the growth of B. subtilis, as much as chitin. Extracellular protein precipitate from B. subtilis culture filtrate had a significant growth-retarding effect on A. niger. Groundnut seeds bacterized with B. subtilis showed a reduced incidence of crown rot in A. niger infested soil, suggesting a possible role of B. subtilis in biological control of A. niger.Key words: mycolytic bacteria, Bacillus subtilis, Aspergillus niger, biological control.


Author(s):  
Baopeng Yang ◽  
Yujun Jiang ◽  
Yongxin Jin ◽  
Fang Bai ◽  
Zhihui Cheng ◽  
...  

Polymyxins are considered as the last resort antibiotics to treat infections caused by multidrug-resistant Gram negative pathogens. Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections in humans. Proteins involved in lipopolysaccharide modification and maintaining inner and outer membrane integrities have been found to contribute to the bacterial resistance to polymyxins. Oligoribonuclease (Orn) is an exonuclease that regulates the homeostasis of intracellular (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), thereby regulating the production of extracellular polysaccharide in P. aeruginosa . Previously, we demonstrated that Orn affects the bacterial resistance to fluoroquinolone, β-lactam and aminoglycoside antibiotics. In this study, we found that mutation of orn increased the bacterial survival following polymyxin B treatment in a wild type P. aeruginosa strain PA14. Overexpression of c-di-GMP degradation enzymes in the orn mutant reduced the bacterial survival. By using a fluorescence labeled polymyxin B, we found that mutation of orn increased the bacterial surface bound polymyxin B. Deletion of the Pel synthesis genes or treatment with a Pel hydrolase reduced the surface bound polymyxin B and bacterial survival. We further demonstrated that Pel binds to extracellular DNA (eDNA), which traps polymyxin B and thus protects the bacterial cells. Collectively, our results revealed a novel defense mechanism against polymyxin in P. aeruginosa .


1988 ◽  
Vol 34 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Michael P. Heaton ◽  
Robert B. Johnston ◽  
Thomas L. Thompson

An alanine racemase (EC 5.1.1.1) mutant (Dal−) of Bacillus subtilis required small amounts of D-alanine to synthesize an osmotically stable cell wall in certain growth media. Investigation of the conditions which caused lysis in hypotonic media revealed that in addition to complex media, such as nutrient broth and acid-hydrolyzed casein, glycine inhibited stable cell wall formation. D-Alanine prevented the glycine inhibition. Up to 99% lysis occurred in both dilute and dense cell suspensions (optical densities up to 110) within 2.5 h after adding 1% glycine to late log phase cultures. Intracellular enzymes recovered from the lysate were as active as those from lysozyme-disrupted cells. No amino acid tested other than glycine induced lysis. Dal− mutants can be used for controlled lysis of bacterial cells to facilitate the isolation of normal intracellular constituents and bioengineered products from fermentation processes. Cell walls of most bacteria contain D-alanine; thus, this strategy should be applicable to a wide variety of microorganisms.


2021 ◽  
Vol 12 (1) ◽  
pp. 349-356
Author(s):  
Satish Kumar Sharma ◽  
Shmmon Ahmad

Bacterial biofilm has been a major contributor to severe bacterial infections in humans. Oral infections have also been associated with biofilm-forming microbes. Several antimicrobial strategies have been developed to combat bacterial biofilms. However, the complexity of the oral cavity has made it difficult to use common drug treatments. Most effective ways to control normal bacterial infections are rendered ineffective for bacterial biofilms. Due to limited drug concentration availability, drug neutralization or altered phenotype of bacterial cells, different drug have been ineffective to identify the target cells. This leads to the development of the multifaceted phenomenon of antimicrobial resistance (AMR). Biofilm research done so far has been focused on using antimicrobial drugs to target molecular mechanisms of cells. The severity and resistance mechanisms of extracellular matrix (ECM) have been underestimated. The present study describes different antimicrobial strategies with respect to their applications in dental or oral infections. A prospective strategy has been proposed targeting ECM which is expected to provide an insight on biofilm obstinacy and antimicrobial resistance.


2004 ◽  
Vol 186 (13) ◽  
pp. 4262-4275 ◽  
Author(s):  
Salbi Paul ◽  
Stephanie Birkey ◽  
Wei Liu ◽  
F. Marion Hulett

ABSTRACT The phoPR operon encodes a response regulator, PhoP, and a histidine kinase, PhoR, which activate or repress genes of the Bacillus subtilis Pho regulon in response to an extracellular phosphate deficiency. Induction of phoPR upon phosphate starvation required activity of both PhoP and PhoR, suggesting autoregulation of the operon, a suggestion that is supported here by PhoP footprinting on the phoPR promoter. Primer extension analyses, using RNA from JH642 or isogenic sigE or sigB mutants isolated at different stages of growth and/or under different growth conditions, suggested that expression of the phoPR operon represents the sum of five promoters, each responding to a specific growth phase and environmental controls. The temporal expression of the phoPR promoters was investigated using in vitro transcription assays with RNA polymerase holoenzyme isolated at different stages of Pho induction, from JH642 or isogenic sigE or sigB mutants. In vitro transcription studies using reconstituted EσA, EσB, and EσE holoenzymes identified PA4 and PA3 as EσA promoters and PE2 as an EσE promoter. Phosphorylated PhoP (PhoP∼P) enhanced transcription from each of these promoters. EσB was sufficient for in vitro transcription of the PB1 promoter. P5 was active only in a sigB mutant strain. These studies are the first to report a role for PhoP∼P in activation of promoters that also have activity in the absence of Pho regulon induction and an activation role for PhoP∼P at an EσE promoter. Information concerning PB1 and P5 creates a basis for further exploration of the regulatory coordination or overlap of the PhoPR and SigB regulons during phosphate starvation.


2012 ◽  
Vol 260-261 ◽  
pp. 1017-1021
Author(s):  
Xin Ying Wang ◽  
Yong Tao Liu ◽  
Min Hui ◽  
Ji Fei Xu

Escherichia coli and Bacillus subtilis as objects of the study, ultrasonic fragmentation acted on the bacterial cells in different growth stages, results showed that, it’s similar to the crushing effect of ultrasound on E. coli and B. subtilis cells of different growth stages, the highest crushing rate in the logarithmic phase, reached to 95.8% and 94.3% respectively, the crushing rate of adjustment phase is lowest, maintained at around 60%, the crushing rate stability cell was centered, which can be achieved 90%. The structure of the bacterial cell wall didn’t the main factor to decide the ultrasonic fragmentation effect, but different growth periods of bacterial cells did the determinant.


Sign in / Sign up

Export Citation Format

Share Document