scholarly journals Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Tathagata Roy Choudhury ◽  
Santanu Banerjee ◽  
Sonal Khanolkar ◽  
Sher Singh Meena

The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (>10 wt%) and moderately high Fe2O3(total) contents (>15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 779
Author(s):  
David Zemánek ◽  
Karel Lang ◽  
Lukáš Tvrdík ◽  
Dalibor Všianský ◽  
Lenka Nevřivová ◽  
...  

The presented study is focused on optimization and characterization of a high-alumina refractory aggregate based on natural raw materials—kaolins, claystone, and mullite dust by-product (used to increase the alumina and mullite contents, respectively). In total, four individual formulas with the Al2O3 contents between 45 and 50 wt.% were designed; the samples were subsequently fired, both in a laboratory oven and an industrial tunnel furnace. The effects of repeated firing were examined during industrial pilot tests. Mineral and chemical compositions and microstructures, of both the raw materials and designed aggregates, were thoroughly investigated by the means of X-ray fluorescence spectroscopy, powder X-ray diffraction, and optical and scanning electron microscopies. Porosity, mineral composition, and mullite crystal-size development during the firing process were also studied. Based on the acquired results, the formula with the perspective to be used as a new mullite grog, featuring similar properties as the available commercial products, however, with reduced production expenses, was selected. The quality of grog determines to a large extent the properties of the final product. Hence, optimization of aggregates for specific refractories is of a great importance. The production of engineered aggregates provides the opportunity to utilize industrial by-products.


2020 ◽  
Vol 51 (6) ◽  
pp. 2689-2710
Author(s):  
Fabian Imanasa Azof ◽  
Kai Tang ◽  
Jinglin You ◽  
Jafar Safarian

AbstractSynthesis of crystalline slags of 12CaO·7Al2O3 phase from the corresponding melt compositions in different atmospheric conditions and different purities is investigated. Observations using a thermogravimetry coupled with differential thermal analysis showed that the dehydration of a zeolitic 12CaO·7Al2O3 phase occur at 770 °C to 1390 °C before it congruently melts at 1450 °C. The X-ray diffraction pattern of the slag showed that a single 12CaO·7Al2O3 phase is produced from a mixture, which has small SiO2 impurity with a 49:51 mass ratio of CaO to Al2O3. A scanning electron microscope and electron probe micro-analyzer showed that a minor Ca-Al-Si-O-containing phase is in equilibrium with a grain-less 12CaO·7Al2O3 phase. Moreover, 12CaO·7Al2O3 is unstable at room temperature when the high-purity molten slag is solidified under oxidizing conditions contained in an alumina crucible. On the other hand, a high-temperature in-situ Raman spectroscopy of a slag that was made of a higher purity CaO-Al2O3 mixture showed that 5CaO·3Al2O3 phase is an unstable/intermediate phase in the the CaO-Al2O3 system, which is decomposed to 12CaO·7Al2O3 above 1100 °C upon heating in oxidizing conditions. It was found that 5CaO·3Al2O3 is present at room temperature when the 12CaO·7Al2O3 dissociates to a mixture of 5CaO·3Al2O3, 3CaO·Al2O3, and CaO·Al2O3 phases during the cooling of the slag at 1180 °C ± 20 °C in reducing atmosphere. It is proposed that low concentrations of Si stabilize 12CaO·7Al2O3 (mayenite), in which Si is a solid solution in its lattice, which is named Si-mayenite. Regarding the calculated CaO-Al2O3-SiO2 diagram in this study, this phase may contain a maximum of 4.7 wt pct SiO2, which depends on the total SiO2 in the system and the Ca/Al ratio.


Author(s):  
Abdelmalek Ammari ◽  
Abdelilah Dekayir ◽  
Bennani Mohamed Amine

The objective of this study is to conduct a mineralogical and chemical characterization of the mortars Roman archaeological site of Volubilis to rebuild spare mortars for restoration. We take samples of mortar, broken tile palate garden, and pavement mosaic Falavius Germanus houses. The analysis by X-ray diffraction reveals the coarse mortar Flavius Germanus is made of quartz and calcite with feldspar and probably, mica and dolomite in small amounts. The binder end is formed calcite and quartz. However, the broken tile mortar is formed by coarse particles, clay base mixed with a binder phase dominated by calcite. These results allowed us to reformulate spare mortars for the restoration of damaged Roman mosaics. The mortars are made up by 63.6% of lime and 36.4% of sand(with 4.19% of large grain, 71, 04% of coarse sand, 24.22%, of fine sand and 0.55% fines parts).The performance of these mortars was tested by mechanical testing.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihaela Flondor ◽  
Ioan Rosca ◽  
Doina Sibiescu ◽  
Mihaela-Aurelia Vizitiu ◽  
Daniel-Mircea Sutiman ◽  
...  

In this paper the synthesis and the study of some complex compounds of Fe(III) with ligands derived from: 2-(4-chloro-phenylsulfanyl)-1-(2-hydroxy-3,5-diiodo-phenyl)-ethanone (HL1), 1-(3,5-dibromo-2-hydroxy-phenyl)-2-phenylsulfanyl-ethanone(HL2), and 2-(4-chloro-phenylsulfanyl)-1-(3,5-dibromo-2-hydroxy-phenyl)-ethanone (HL3) is presented. The characterization of these complexes is based on method as: the elemental chemical analysis, IR and ESR spectroscopy, M�ssbauer, the thermogravimetric analysis and X-ray diffraction. Study of the IR and chemical analysis has evidenced that the precipitates form are a complexes and the combination ratio of M:L is 1:2. The central atoms of Fe(III) presented paramagnetic properties and a octaedric hybridization. Starting from this precipitation reactions, a method for the gravimetric determination of Fe(III) with this organic ligands has been possible. Based on the experimental data on literature indications, the structural formulae of the complex compounds are assigned.


Sign in / Sign up

Export Citation Format

Share Document