scholarly journals Large-Scale Consumption and Zero-Waste Recycling Method of Red Mud in Steel Making Process

Minerals ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 102 ◽  
Author(s):  
Guoshan Ning ◽  
Bo Zhang ◽  
Chengjun Liu ◽  
Shuai Li ◽  
Yun Ye ◽  
...  
2021 ◽  
Vol 295 ◽  
pp. 126358
Author(s):  
Binxian Gu ◽  
Xinyi Tang ◽  
Lingxuan Liu ◽  
Yuanyuan Li ◽  
Takeshi Fujiwara ◽  
...  

Author(s):  
Volodymyr Bondarenko ◽  
◽  
Oleksandr Filonenko ◽  
Mykhailo Petlovanyi ◽  
Vladyslav Ruskykh ◽  
...  

Purpose. Experimental studies of the interaction of blast-furnace and steel-making slags with open pit waters during their direct contact and assessment of the volume of filling of the formed man-made cavities during mining of mineral deposits. Methods. Based on the analysis, the current low level of metallurgical slag and the lack of real and effective directions of their large-scale utilization were determined. The laboratory studies of the interaction of metallurgical slags with open pit water at a certain time of interaction, generally accepted methods for studying the chemical composition and concentration of substances in water, computer-aided design software packages and drawings to determine the volumes of the open pit mined-out area were used. Results. The dynamics of changes in the products of interactions of steel-smelting slags with open-pit waters at a certain ratio and period of interaction was investigated. It was found that the concentration of pollutants upon contact of water with steel-making slag changes according to polynomial dependences on the time of their interaction, decreasing by the 30th day, which eliminates the danger for the aquifer. The safest type of metallurgical slag was recommended for the formation of the bottom layer of the backfill massif. The volumes of the mined-out area of the open pit were determined in detail to assess the volumes of placement of the backfill material based on metallurgical slags. Scientific novelty. The safety of the contact of backfill materials based on steelmaking slags with open pit water was scientifically proven, which is confirmed by the established polynomial patterns of changes in concentrations and pollutants from the ratio and time of interaction. Practical significance. The formation of the backfill massif on the basis of blast-furnace dump and steel-smelting slags will allow achieving an environmental effect, such as their safe disposal as a reclamation of technologically disturbed lands by mining and restoration of the economic value of the land plot, as well as preventing the formation of new dumps.


2019 ◽  
pp. 149-169 ◽  
Author(s):  
Giacomo Copani ◽  
Marcello Colledani ◽  
Alessandro Brusaferri ◽  
Antonio Pievatolo ◽  
Eugenio Amendola ◽  
...  

2020 ◽  
Vol 117 (1) ◽  
pp. 115
Author(s):  
Bo Zhang ◽  
Chengjun Liu ◽  
Maofa Jiang

To realize a large-scale consumption of red mud in the steelmaking industry, a new recycling method was investigated through the pre-reduction roasting experiment and the slag-metal interaction experiment simulating the hot metal pretreatment process in the steelmaking industry. In virtue of the sensible heating of the hot metal and the reducibility of [C] and [Si], the iron could be separated and recovered from the pre-reduced red mud pellets into the hot metal directly with a recovery rate exceeding 75%. With the composition adjustment of the residual oxides in the pre-reduced red mud (PRRD) using CaO and Al2O3 or aluminium dross (AD), a slag having a low melting point (below 1300 °C) and a high sulfide capacity (lgCS = −2.3) was formed, and more than 94% of [S] in the hot metal could be removed into this slag through the slag-metal interaction. The desulfurization efficiency of the flux (PRRD-CaO–Al2O3; PRRD-CaO–AD) is approximate to the traditional desulfurizing flux (CaO–CaF2). The advantages of this method are summarized as the low energy cost and the slag valorization.


2021 ◽  
Vol 13 (19) ◽  
pp. 10927
Author(s):  
Anton Orlov ◽  
Elena Klyuchnikova ◽  
Anna Korppoo

Most municipal solid waste (MSW) in Russia is disposed of in landfills, and only a relatively small fraction is recycled. The landfilling of waste leads to greenhouse gas (GHG) emissions, and air and groundwater pollution. However, recently, there have been some initiatives to improve waste management in the country. We assessed the economic and environmental benefits of waste recycling in the Murmansk region, in which a new waste recycling plant has been operating since 2019. We found that MSW recycling in the Murmansk region has induced a small, positive, job creation effect and could potentially lead to a non-negligible reduction in GHG emissions. Extrapolating the results from this case study to the country level, we found that recycling landfilled MSW in Russia could save approximately 154 million tons of GHG emissions in carbon dioxide equivalents annually, which is comparable to the total CO2 emissions from Algeria. The positive environmental and health-related impacts from the extensive implementation of MSW recycling in the country could be substantial. From this case study, we also learned that one of the biggest challenges for the waste recycling company in the Murmansk region is finding profitable markets for recycled materials. Moreover, due to the high investment and operational costs, recycling MSW led to a substantial increase in communal fees. However, there is potential to make waste recycling more cost effective. Most MSW in the Murmansk region is still separated at the recycling plant, while separating waste at the source could substantially reduce operational costs. Other challenges in the large-scale implementation of MSW recycling in Russia, such as a lack of investments and the population’s willingness to recycle waste, are also discussed.


Author(s):  
Gang Xiang ◽  
Shengxing Long ◽  
Xianliang Wu ◽  
Huijuan Liu

Abstract Biochar can have multiple benefits, such as solid waste recycling, water pollution treatment, carbon fixation and sustainability. The present study aimed to investigate Cd(II) removal from aqueous solutions using pomelo peel derived biochar combined with a permeable reactive barrier (PRB). The results show that there were slight changes in the structure of the pomelo peel derived biochar before and after activation, while the variation was not significant. The specific surface areas of the not activated and activated pomelo peel derived biochars were 3.207 m2/g and 6.855 m2/g, respectively. The pore diameter of the former was 4.165 nm and that of the latter was 4.425 nm, indicating that the two materials are mainly mesoporous. BP-GA was more suitable than RSM for optimizing the removal conditions of Cd(II) using the prepared materials combined with PRB. The maximum removal efficiency of Cd(II) was 90.31% at biochar dosage = 4.84, reaction time = 53.75 min, initial Cd(II) concentration = 19.36 mg/L and initial pH = 6.07. The verification experiment was 88.74% under these experimental conditions, and the absolute error was 1.57%. The saturated adsorption capacity of quartz sand for Cd(II) is approximately 0.08 mg/g when reaching equilibrium. The saturated adsorption capacity of biochar for Cd(II) is approximately 29.76 mg/g. Pseudo second order kinetics and Langmuir isotherm adsorption were more suitable for describing the Cd(II) adsorbed from an aqueous solution by activated pomelo peel derived biochar. The adsorption process of Cd(II) by the prepared biochar was spontaneous, endothermic and entropy driven. Our results suggest that the modified biochar can be regenerated within the fourth cycle and that it has application prospects as a useful adsorbent for water treatment in PRB systems. This finding provides a reference for relieving Cd pollution and for its large scale removal from wastewater when combined with a PRB system.


Author(s):  
Takahiro Hayashi ◽  
Takuya Ogawa ◽  
Rie Sumiya ◽  
Tetsushi Yamaoka ◽  
Shigeaki Tanaka ◽  
...  

Abstract Control of carbon macro-segregation in the steel-making process for large steel forgings is of great importance in order to achieve the material properties and structural reliability required for the pressure vessels of nuclear power plant components. It is well known that high carbon content due to carbon macro-segregation can affect the mechanical properties of steels, leading to decreases in ductility and fracture toughness. In this study, possible effects of carbon macro-segregation have been examined using a large-scale forged steel “bottom head dome” of a reactor pressure vessel (RPV) manufactured for a recent BWR. Material testing conducted included chemical analyses, tensile tests and Charpy impact tests. In the center part of the concave disk-shaped forged material, carbon content varied slightly in the material thickness direction within the range of carbon content requirement, as expected from the relationship between the solidification and the resultant segregation process in the cast ingot material and the forging process from the ingot to the dome material. The results of each mechanical test also showed full compliance with the properties required in the code regardless of the carbon content at each of the thickness locations examined. All the tests results demonstrated that with the steel-making technology and practice employed, carbon macro-segregation is well controlled to achieve the required material properties even in large-scale forged materials used in BWRs.


2017 ◽  
Vol 311 ◽  
pp. 117-125 ◽  
Author(s):  
Marta López-García ◽  
María Martínez-Cabanas ◽  
Teresa Vilariño ◽  
Pablo Lodeiro ◽  
Pilar Rodríguez-Barro ◽  
...  

2021 ◽  
Vol 237 ◽  
pp. 04016
Author(s):  
Lihua Han ◽  
Zhiqi Gong

Large-scale engineering construction projects have irreversibly damaged the ecological environment while promoting economic development and improving living standards. As the demand for realizing a resource-conscious and environment-friendly society continues to grow, people are increasingly interested in the sustainable development of construction waste. In this paper, the relevant literature in the field of construction waste is retrieved through the Web of Science database as the research object, and the VOSviewer measurement analysis tool is used to analyze the existing international research results. According to the research results, the research on construction waste in the field of construction research has attracted much attention in recent years. At the same time, domestic scholars have made outstanding contributions to this field, but they have the disadvantages of insufficient research depth and low citation rate. The research hotspots in the field of construction waste mainly focus on the construction waste recycling aggregate, construction waste management, and construction waste resource utilization strategy.


Sign in / Sign up

Export Citation Format

Share Document