scholarly journals Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean)

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 84 ◽  
Author(s):  
Łukasz Maciąg ◽  
Dominik Zawadzki ◽  
Gabriela A. Kozub-Budzyń ◽  
Adam Piestrzyński ◽  
Ryszard A. Kotliński ◽  
...  

Mineralogy of phosphatized and zeolitized hydrogenous cobalt-rich ferromanganese crusts from Dirck Hartog Ridge (DHR), the Perth Abyssal Plain (PAP), formed on an altered basaltic substrate, is described. Detail studies of crusts were conducted using optical transmitted light microscopy, X-ray Powder Diffraction (XRD) and Energy Dispersive X-ray Fluorescence (EDXRF), Differential Thermal Analysis (DTA) and Electron Probe Microanalysis (EPMA). The major Fe-Mn mineral phases that form DHR crusts are low-crystalline vernadite, asbolane and a feroxyhyte-ferrihydrite mixture. Accessory minerals are Ca-hydroxyapatite, zeolites (Na-phillipsite, chabazite, heulandite-clinoptilolite), glauconite and several clay minerals (Fe-smectite, nontronite, celadonite) are identified in the basalt-crust border zone. The highest Ni, Cu and Co contents are observed in asbolane and Mn-(Fe) vernadite. There is significant enrichment of Ti in feroxyhyte−ferrihydrite and vernadite. The highest rare earth element (REE) content is measured in the phosphate minerals, less in phyllosilicates and Na-phillipsite. The geochemical composition of minerals in the DHR crusts supports the formation of crusts by initial alteration, phosphatization and zeolitization of the substrate basalts followed by oscillatory Fe-Mn oxyhydroxides precipitation of hydrogenous vernadite (oxic conditions) and diagenous asbolane (suboxic conditions).

2016 ◽  
Vol 32 (3) ◽  
pp. 67-92
Author(s):  
Katarzyna Stanienda

AbstractThis article presents the results of studies of carbonate rock samples that came from all members of the Górażdże Beds (Lower Muschelkalk – Middle Triassic), taken from the area of the Opole Silesia. Researches allowed the types of mineral phases which built the analyzed rocks to be determined. The limestone samples were collected in the Ligota Dolna Quarry, Strzelce Opolskie Quarry, Wysoka Quarry and the area of Saint Anne Mountain. Thirteen samples were taken from the Ligota Dolna Deposit, 4 samples – in the Strzelce Opolskie Quarry and 5 samples – in the area of St. Anne Mountain. Selected rock samples were examined using a microscope with polarized, transmitted light, FTIR spectroscopy, X-ray diffraction and microprobe measurements E PMA.The results of the study show that the limestone of the Górażdże Beds from the area of Opole Silesia do not exhibit diversified types according to the Ca and Mg content of. They are characterized by the Ca and Mg high purity of geochemical composition, as well as the domination of the low magnesium calcite. There are lower contents of carbonate phases rich in magnesium – high magnesium calcite (high-Mg calcite, which is also known as magnesio-calcite) and dolomite. The majority of the data was obtained through the results of the FTIR spectroscopy and microprobe measurements. Some information gave the results of microscopic analysis. The results of X-ray diffraction indicate the occurrence only low magnesium calcite in the studied samples. Dolomite was identified in some samples of Górażdże Beds and high magnesium calcite – in sample of the Wysoka Micrite Member. Smaller amounts of non-carbonate phases occurred in the analyzed rocks. Quartz, chalcedony, feldspars, micas and clay minerals were identified among the non-carbonate phases.The small diversification of the geochemical composition of the Górażdże limestones could be connected with their sedimentation environment conditions. These rocks represent the type of barrier sediments, which were formed during the sea transgression.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 598
Author(s):  
Jose R. A. Godinho ◽  
Gabriel Westaway-Heaven ◽  
Marijn A. Boone ◽  
Axel D. Renno

This paper demonstrates the potential of a new 3D imaging technique, Spectral Computed Tomography (sp-CT), to identify heavy elements inside materials, which can be used to classify mineral phases. The method combines the total X-ray transmission measured by a normal polychromatic X-ray detector, and the transmitted X-ray energy spectrum measured by a detector that discriminates between X-rays with energies of about 1.1 keV resolution. An analysis of the energy spectrum allows to identify sudden changes of transmission at K-edge energies that are specific of each element. The additional information about the elements in a phase improves the classification of mineral phases from grey-scale 3D images that would be otherwise difficult due to artefacts or the lack of contrast between phases. The ability to identify the elements inside the minerals that compose ore particles and rocks is crucial to broaden the application of 3D imaging in Earth sciences research and mineral process engineering, which will represent an important complement to traditional 2D imaging mineral characterization methods. In this paper, the first applications of sp-CT to classify mineral phases are showcased and the limitations and further developments are discussed.


2021 ◽  
Author(s):  
Juliette Debrie ◽  
Dimitri Prêt ◽  
Karim Benzerara ◽  
Jean Paul Saint Martin

<p>Stromatolites, i.e. macroscopically laminated carbonate rocks formed by diverse microbial communities, are particularly emblematic geobiological materials since they are the oldest evidence of life-mineral interactions, dated up to 3.5 Gyrs ago.  They are found throughout the history of the Earth and have received strong attention because they provide precious information about microbial paleobiodiversity and paleoenvironments. However, while this information is interpreted based on our knowledge about modern analogs, the latter remains very incomplete. Here, we studied recently discovered modern stromatolites from Mari Ermi<sup>1</sup>, a coastal pond in Western Sardinia, that seasonally experience severe evaporation and broad salinity variations. For this purpose, we explored the mineralogical composition of these unique sedimentary archives and its spatial variations in order to gain better insight into how mineral phases record the conditions and processes of their formation. We investigated the heterogeneous distribution of minerals using quantitative X-ray chemical maps provided by energy dispersive x-ray spectrometry analyses coupled with scanning electron microscopy (SEM-EDXS). Hyperspectral maps were analyzed using an innovative data treatment method <sup>2</sup> allowing phase recognition within the complex mineral mixtures and solid solutions encountered. This method provided quantitative data on spatial distribution, modal content and associated calculated unit formulas for each identified mineral and phase with a hundred nanometer resolution. Based on these results, we will discuss the origin of the laminations in the stromatolites.</p><p>Reference:</p><p>1. Saint Martin, J.-P. & Saint Martin, S. Geo-Eco-Marina <strong>21</strong>, 35–53 (2015a).</p><p>2. Prêt, D. et al. American Mineralogist <strong>95</strong>, 1379–1388 (2010).</p>


2021 ◽  
Vol 11 (5) ◽  
pp. 724-731
Author(s):  
Hemin Liu ◽  
Qian Huang ◽  
Liang Zhao

This study investigates the deterioration of concrete containing limestone powder exposed to sulfate solution under ambient temperature (20~25 °C). Microstructure and mineral phases within the attacked concrete were measured by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was found that the addition of limestone powder increased the initial porosity of concrete. Consequently, a larger amount of SO2–4 ions diffused into the concrete containing limestone powder, and their degree of deterioration caused by sulfate attack increased with the increase in limestone powder content. At ambient temperature, gypsum and ettringite were the major attack products, respectively within the surface and nearsurface portions of concrete containing limestone powder, which was consistent with the products of sulfate attack within concrete without limestone powder. Therefore, the type and distribution of the attack products in concrete had not been revised due to the addition of limestone powder. Nevertheless, the adverse influence of limestone powder on the sulfate resistance of concrete, even at ambient temperature, should be considered. Furthermore, effective measures should be implemented to improve the durability of concrete containing limestone powder in this environment.


Cerâmica ◽  
2011 ◽  
Vol 57 (341) ◽  
pp. 56-62 ◽  
Author(s):  
R. Palanivel ◽  
U. Rajesh Kumar

The present investigation is carried out to estimate the firing temperature and conditions of firing of ancient pottery shreds excavated recently from Sembiankandiyur, Tamil Nadu, India. FTIR and XRD studies have been attempted on these shreds to characterize the mineral composition of the pottery artifacts in respect of their different physical attributes. The firing temperature and conditions were inferred from the mineral phases of the samples exhibited by the infrared spectra and X-ray diffractograms recorded in as received state. TG-DTA is the complementary technique to elucidate the firing temperature from the thermal characteristic reactions such as dehydration, decomposition and transformations of minerals under the controlled firing of the samples in inert atmosphere.


1978 ◽  
pp. 245-259 ◽  
Author(s):  
H. J. Annegarn ◽  
R. J. Keddy ◽  
C. C. P. Madiba ◽  
M. J. Renan ◽  
J. P. F. Sellschop

Cerâmica ◽  
2018 ◽  
Vol 64 (372) ◽  
pp. 570-576
Author(s):  
B. Ngayakamo ◽  
S. E. Park

Abstract This study evaluated the potential of locally sourced-ceramic raw materials in Tanzania, Pugu kaolin, Same clay, vermiculite and feldspar, for production of high voltage porcelain insulators. The chemical, mineral phases and microstructural characterization of raw materials and porcelain samples were carried out using the X-ray fluorescence, X-ray diffraction, and scanning electron microscopy techniques, respectively. The mineral phases of the fired porcelain sample identified were mullite and quartz. The porcelain bodies were fabricated using the dry pressing method by varying the composition of the selected ceramic raw materials. The physical-mechanical properties and dielectric strength were measured for each porcelain sample. The sample with the composition of 20% Pugu kaolin, 20% Same clay, 20% vermiculite and 40% feldspar was found to have the dielectric strength of 50.8 kV.mm-1, bending strength of 20 MPa and water absorption of 0.46%, which satisfies the main requisite properties for high voltage porcelain insulators.


2017 ◽  
Vol 6 (2) ◽  
pp. 114-114 ◽  
Author(s):  
Tatiana Minkina ◽  
Dina Nevidomskaya ◽  
Alexander Soldatov ◽  
David Pinskii ◽  
Fariz Mikailsoy ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


Sign in / Sign up

Export Citation Format

Share Document