scholarly journals Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1501 ◽  
Author(s):  
Hamdoon A. Mohammed ◽  
Mohsen S. Al-Omar ◽  
Mahmoud Zaki El-Readi ◽  
Ahmad H. Alhowail ◽  
Maha A. Aldubayan ◽  
...  

Background: This study is designed to discover a method for delivering an efficient potent pheophytin a (pheo-a) into more absorbed and small polymeric ethyl cellulose (EC) microparticles. Methods: Silica gel and Sephadex LH-20 columns were used to isolate pheo-a from the chloroform extract of the edible plant, Suaeda vermiculata. Pheo-a was incorporated into EC microparticles using emulsion-solvent techniques. The antioxidant activity of pheo-a microparticles was confirmed by the level of superoxide radical (SOD), nitric oxide (NO), and reducing power (RP) methods. Meanwhile, the cytotoxic effect of the product was investigated on MCF-7 cells using MTT assay. Results: Pheo-a was isolated from S. vermiculata in a 12% concentration of the total chloroform extract. The structures were confirmed by NMR and IR spectroscopic analysis. The formulated microparticles were uniform, completely dispersed in the aqueous media, compatible as ingredients, and had a mean diameter of 139 ± 1.56 µm as measured by a particle size analyzer. Pheo-a demonstrated a valuable antioxidant activity when compared with ascorbic acid. The IC50 values of pheo-a microparticles were 200.5 and 137.7 µg/mL for SOD, and NO respectively. The reducing power of pheo-a microparticles was more potent than ascorbic acid and had a 4.2 µg/mL for IC50 value. Pheo-a microparticles did not show notable cytotoxicity on the MCF-7 cell line (IC50 = 35.9 µg/mL) compared with doxorubicin (IC50 = 3.2 µg/mL). Conclusions: the results showed that water-soluble pheo-a microparticles were prepared with a valuable antioxidant activity in a wide range of concentrations with a noteworthy cytotoxic effect.

2020 ◽  
Vol 9 (2) ◽  
pp. 975-980 ◽  

Acacia nilotica (L.) Delile is well known as “Desi Kikar”or Babul in India that possesses a wide range of pharmacological activities. In the present study, Acacia nilotica twig extract and its synthesized silver nanoparticles (AgNPs) were evaluated for total phenolic content (TPC), antioxidant activity and cytotoxic effects. Characterization of AgNPs was done by UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) techniques. Antioxidant potential was determined using different assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power and β-carotene linoleic acid. Cytotoxicity was tested by 3-(4,5-dimethyl-2-yl)-2,5-diphynyl tetrazolium bromide (MTT) assay on Human embryonic kidney (HEK)-293 cell lines. The results indicated that AgNPs exhibited higher antioxidant activity (81.11 %) and TPC (57.35 mg of GAE/mL of extract) as compare to plant extract. A positive correlation was observed between the TPC and antioxidant activities. The inhibitory concentration (IC50) of A. nilotica extract and AgNPs was 52.08µg/mL and 56.82µg/mL respectively. Cytotoxicity against HEK-293 cell lines was dose dependent. Accordingly, it is summarized that A. nilotica based AgNPs could serve as a potential antioxidant for therapeutic purposes.


Author(s):  
Rania B. Bakr ◽  
Nadia A.A. Elkanzi

Background & objectives: 1,2-thiazine and pyridine heterocycles drew much attention due to their biological activities including antioxidant activity. Based upon fragment based drug design, novel pyrido[1,2]thiazines 9a-c, thiazolidinopyrido[1,2]thiazines 10a-c and azetidinopyrido[1,2]thiazines 11a-c were designed and prepared. Methods: These novel derivatives 9a-c, 10a-c and 11a-c were subjected to screening for their antioxidant activity via various assays as DPPH radical scavenging potential, reducing power assay and metal chelating potential. Results: All the assayed derivatives exhibited excellent antioxidant potential and the tested compounds 9a, 9b, 10a, 10b, 11a and 11b exhibited higher DPPH scavenging potential (EC50 = 32.7, 53, 36.1, 60, 40.6 and 67 µM, respectively) than ascorbic acid (EC50 = 86.58 µM). While targets 9a, 10a and 11a (RP50 = 52.19, 59.16 and 52.25 µM, respectively) exhibited better reducing power than the ascorbic acid (RP50 = 84.66 µM). Computational analysis had been utilized to prophesy the bioactivity and molecular properties of the target compounds. Conclusion: To predict the binding manner of the novel derivatives as antioxidants, in-silico docking study had been performed to all the newly prepared compounds inside superoxide dismutase (SOD) and catalase (CAT) active site. The most active antioxidant candidate 9a (EC50 = 32.7 µM, RP50 = 52.19 µM) displayed excellent binding with Lys134 amino acid residing at Cu-Zn loop of SOD with binding energy score = -7.54 Kcal/mol thereby increase SOD activity and decrease reactive oxygen species.


2019 ◽  
Vol 20 (19) ◽  
pp. 4735 ◽  
Author(s):  
Anja Harej ◽  
Andrijana Meščić Macan ◽  
Višnja Stepanić ◽  
Marko Klobučar ◽  
Krešimir Pavelić ◽  
...  

The novel 4-substituted 1,2,3-triazole L-ascorbic acid (L-ASA) conjugates with hydroxyethylene spacer as well as their conformationally restricted 4,5-unsaturated analogues were synthesized as potential antioxidant and antiproliferative agents. An evaluation of the antioxidant activity of novel compounds showed that the majority of the 4,5-unsaturated L-ASA derivatives showed a better antioxidant activity compared to their saturated counterparts. m-Hydroxyphenyl (7j), p-pentylphenyl (7k) and 2-hydroxyethyl (7q) substituted 4,5-unsaturated 1,2,3-triazole L-ASA derivatives exhibited very efficient and rapid (within 5 min) 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity (7j, 7k: IC50 = 0.06 mM; 7q: IC50 = 0.07 mM). In vitro scavenging activity data were supported by in silico quantum-chemical modelling. Thermodynamic parameters for hydrogen-atom transfer and electron-transfer radical scavenging pathways of anions deprotonated at C2-OH or C3-OH groups of L-ASA fragments were calculated. The structure activity analysis (SAR) through principal component analysis indicated radical scavenging activity by the participation of OH group with favorable reaction parameters: the C3-OH group of saturated C4-C5(OH) derivatives and the C2-OH group of their unsaturated C4=C5 analogues. The antiproliferative evaluation showed that p-bromophenyl (4e: IC50 = 6.72 μM) and p-pentylphenyl-substituted 1,2,3-triazole L-ASA conjugate (4k: IC50 = 26.91 μM) had a selective cytotoxic effect on breast adenocarcinoma MCF-7 cells. Moreover, compound 4e did not inhibit the growth of foreskin fibroblasts (IC50 > 100 μM). In MCF-7 cells treated with 4e, a significant increase of hydroxylated hypoxia-inducible transcription factor 1 alpha (HIF-1α) expression and decreased expression of nitric oxide synthase 2 (NOS2) were observed, suggesting the involvement of 4e in the HIF-1α signaling pathway for its strong growth-inhibition effect on MCF-7 cells.


2008 ◽  
Vol 5 (s2) ◽  
pp. 1123-1132 ◽  
Author(s):  
H. Vijay Kumar ◽  
C. R. Gnanendra ◽  
Nagaraja Naik ◽  
D. Channe Gowda

Dibenz[b,f]azepine and its five derivatives bearing different functional groups were synthesized by known methods. The compounds thus synthesized were evaluated for antioxidant potential through different in vitro models such as (DPPH) free radical scavenging activity,ß-carotene-linoleic acid model system, reducing power assay and phosphomolybdenum method. Under our experimental condition among the synthesized compounds dibenz[b,f]azepine (a) and 10-methoxy-5H-dibenz[b,f]azepine (d) exhibited potent antioxidant activity in concentration dependent manner in all the above four methods. Butylated hydroxyl anisole (BHA) and ascorbic acid (AA) were used as the reference antioxidant compounds. The most active compounds like dibenz[b,f]azepine and its methoxy group substituent have shown more promising antioxidant and radical scavengers compared to the standards like BHA and ascorbic acid. It is conceivable from the studies that the tricyclic amines,i.e. dibenz[b, f]azepine and some of its derivatives are effective in their antioxidant activity properties.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 364 ◽  
Author(s):  
Mansor Hamed ◽  
Diganta Kalita ◽  
Michael E. Bartolo ◽  
Sastry S. Jayanty

Peppers (Capsicum annuum L.) are an important crop usually consumed as food or spices. Peppers contain a wide range of phytochemicals, such as capsaicinoids, phenolics, ascorbic acid, and carotenoids. Capsaicinoids impart the characteristic pungent taste. The study analyzed capsaicinoids and other bioactive compounds in different pepper cultivars at both the mature green and red stages. The effect of roasting on their nutritional content was also investigated. In the cultivars tested, the levels of capsaicin ranged from 0 to 3636 µg/g in the mature green stage and from 0 to 4820 µg/g in the red/yellow stage. The concentration of dihydrocapsaicin ranged from 0 to 2148 µg/g in the mature green stage and from 0 to 2162 µg/g in the red/yellow stage. The levels of capsaicinoid compounds in mature green and red /yellow stages were either reduced or increased after roasting depending on the cultivar. The ranges of total phenolic and total flavonoids compounds were 2096 to 7689, and 204 to 962 µg/g, respectively, in the green and red/yellow mature stage pods. Ascorbic acid levels in the peppers ranged from 223 to 1025 mg/ 100 g Dry Weight (DW). Both raw and roasted peppers possessed strong antioxidant activity as determined by 2,2-diphenyl-1-picrylhydrazyl) reagent (DPPH, 61–87%) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS, 73–159 µg/g) assays. Ascorbic acid and antioxidant activity decreased after roasting in the mature green and red stages, whereas total phenolics and flavonoids increased except in the mature green stage of Sweet Delilah and yellow stage of Canrio.


2020 ◽  
Vol 10 (2) ◽  
pp. 117-122
Author(s):  
Kantabathini Venkata Pavani ◽  
Mallula Beulah ◽  
Govinda Udayar Sai Poojitha

Aim: The purpose of this study was to test the phytotoxicity effect of ZnONPs on Vigna mungo L. seedling growth and antioxidant activity. Methods: Vigna mungo L. Seeds were treated with to a wide range of ZnO NPs ranging 5 to25mg/100ml for 8hours. Vigna mungo seeds that were soaked in ZnO NPs solution were sown in pots (20 cm × 40 cm) filled with red soil and a layer of coco peat. The effect of ZnO NPs on morphological, biochemical and antioxidant activity in Vigna mungo L. plants was investigated after 15,30,45 and 60 days. Results: The impact of ZnO NPs on plant growth characteristics and biochemical changes in Vigna mungo L. plants was investigated after 15,30,45 and 60 days. The ZnONPs exposure significantly enhanced germination percentage by 111.3% but root length (75.25%), shoot length (89.81%), number of leaves (91.66%), length of leaves (76%), width of leaves (67.27%), fresh weight of plant (27.96%) and dry weight of plant (28.23%) decreased in the treated plants after 60 days exposure to 25mg/100ml compared to the untreated control. Interestingly, treated plants after 60 days exposure to 25mg/100ml increased significantly the chlorophyll (115.0%), reducing sugars (244.4%), total sugars (212.72%) protein (181.8%). Treatment to Vigna mungo L. seeds with ZnONPs has been found to induce the activities of antioxidant enzymes such as Guaiacol peroxidase, Glutathione Reductase, Catalase and increase in the ascorbic acid and hydrogen peroxide contents. TEM images revealed that the aggregated ZnO NPs to be deposited inside the seed. Conclusion: Vigna mungo seeds treated with different concentrations of ZnO NPs showed decreased root growth and increased germination index, shoot and leaf growth. There was a significant change in Glutathione reductase, Guaiacol peroxidase and Catalase activity and ascorbic acid and hydrogen peroxide of Vigna mungo exposed to ZnONPs. Aggregated nanoparticles penetration into the intracellular region of the seed was observed.A complete study on the toxic effects of ZnO NPs can help significantly in the safe disposal of ENPs for the reduction of adverse effects in both environmental and agricultural systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rabia Kanwal ◽  
Muhammad Arshad ◽  
Yamin Bibi ◽  
Saira Asif ◽  
Sunbal Khalil Chaudhari

Zanthoxylum armatumDC. (syn.Z. alatumRoxb.) is an important medicinal plant commonly called Timur or Indian prickly ash. The ethnopharmacological study ofZ. armatumrevealed the use of different plant parts for curing various ailments including cholera, chest infection, fever, indigestion, stomach disorders, gas problems, piles, toothache, gum problems, dyspepsia, as carminative, antipyretic, aromatic, tonic, and stomachic. Keeping in view the medicinal potential of the plant, the antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, and phosphomolybdate assay using different concentrations (7.81 μg/mL–250 μg/mL). Ascorbic acid was taken as standard. The results indicated that the free radical scavenging activity ranged from 40.12% to 78.39%, and the reductive potential ranged from 0.265 nm to 1.411 nm while the total antioxidant activity ranged from 0.124 nm to 0.183 nm. The antioxidant potential evaluated by three assays increased in a concentration dependent manner and ascorbic acid showed better antioxidant activity than leaf extract. Results obtained through different tests confirmed redox protective activities ofZanthoxylum armatum. Further in vitro and in vivo research should be performed, so this plant can be further utilized in drug development.


2016 ◽  
Vol 46 (2) ◽  
pp. 228-236 ◽  
Author(s):  
Neuza Jorge ◽  
Carolina Médici Veronezi ◽  
Danusa Cassiano Pereira

Purpose – This study aims to deal with the evaluation of the antioxidant capacity of lyophilized hydroalcoholic extracts of red peppers in natura. Furthermore, preference was evaluated for the taste and color of soybean oil added red pepper extracts. Design/methodology/approach – The antioxidant capacity was determined by four methods. The content of phenolic compounds, carotenoids and ascorbic acid in the extracts was determined by chromatographic, spectrophotometric and titration methods, respectively. Findings – The results showed that the highest antioxidant capacity was found in Malagueta pepper extract through reducing power (FRAP) method. In this same extract, high amount of phenolic compounds was found. However, the extracts of Bode and Dedo-de-moça peppers had higher amounts of carotenoids and ascorbic acid, respectively. Sensorially, the oil added extracts were preferred. Practical implications – Red peppers are very popular and consumed worldwide, besides being constituted of important phytochemicals. Results showed high antioxidant activity in the extracts of peppers, and high content of phenolic compounds, carotenoids and ascorbic acid mainly in chili. This study highlights the importance of the extracts of red peppers, genus Capsicum, as a source of antioxidants, in addition to vegetable oils. Originality/value – It is important to check the acceptance of the application of extract in vegetable oil, so it can be marketed as a natural antioxidant. This study provides valuable information about the antioxidant capacity of extracts of red peppers and its acceptance.


Author(s):  
DANG XUAN CUONG ◽  
VU NGOC BOI ◽  
TRAN KHAC TRI NHAN ◽  
DINH HUU DONG ◽  
THAI MINH QUANG ◽  
...  

Objective: To investigate the content and antioxidant activities of polyphenol, the correlation between polyphenol content and their antioxidant activities, and phytochemistry compositions of different extracts from marine sponge Aaptos suberitoides commonly found growing in Nhatrang bay, Vietnam orienting application into functional food and pharmacy. Methods: Evaluating the toxicity of antioxidant polyphenol powder preparing from the initial concentrated extract was by the adjusted Behrens Karber method and a correlation between polyphenol content and antioxidant activities basing on the Pearson coefficient in Excel. Separating antioxidant polyphenol content was base on solvents polarization of n-hexane, chloroform, ethanol, ethyl acetate and n-butanol which the quantification of polyphenol content and antioxidant activities, and preliminary phytochemical compositions qualitative. Results: Antioxidant polyphenol powder did not affect mice weight during the assay time of 28 d. Polyphenol content and antioxidant activities got the highest value at chloroform extract in comparison to other extracts, a significant difference (p<0.05) and strong correlation (R2>0.9). Polyphenol content (122.682 mg gallic acid equivalent ml-1), total antioxidant activity (368.183 mg ascorbic acid equivalent ml-1), reducing power activity (24.08 mg FeSO4 equivalent ml-1) and DPPH scavenging (72.48±1.54 %) were the highest values. Alkaloids, flavonoids, steroids, tannins and triterpenoids existed in initial methanol extract. Weakly polarized polyphenol content was 70.27% in comparison to initial methanol extract. Conclusion: Antioxidant polyphenol of sponge Aaptos suberitoides has the potential for application into the field of functional food and pharmaceuticals.


1970 ◽  
Vol 3 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Fatema Tuz Zohera ◽  
Md Razibul Habib ◽  
Mohammad Zafar Imam ◽  
Md Ehsanul Hoque Mazumder ◽  
Md Sohel Rana

The objective of the present study was to evaluate the comparative antioxidant potential of methanol, ethyl acetate, pet ether and water extracts of Celastrus paniculatus seed. Antioxidant activity was evaluated by using total phenol and flavonoid content determination assays, total antioxidant capacity, 1,1-diphenyl-2- picryl-hydrazil (DPPH) free radical assay, Reducing power assessment, Nitric oxide (NO) scavenging assay and Cupric ion reducing capacity assay (CUPRAC method). The extracts showed moderate antioxidant activity in a dose dependent manner. The extracts were found to contain phenolics and flavonoid compounds. In DPPH radical scavenging assay, ethyl acetate extract had the lowest IC50 value (585.58μg/ml) compared to ascorbic acid. In nitric oxide scavenging assay IC50 value was found to be 122.99μg/ml, 320.54μg/ml, 601.81μg/ml and 206.37μg/ml respectively for the Water, Methanol, Ethyl Acetate and Pet Ether extracts compared to 6.83μg/ml which was the IC50 value for the reference ascorbic acid. The extracts also showed good reducing power. The results of the present study indicate that the extracts possesses significant antioxidant potential of which ethyl acetate extract is the most promising one and possess highest antioxidant potential. Key Words: Celastrus paniculatus; antioxidant; DPPH; NO scavenging; CUPRAC; ROS. DOI: 10.3329/sjps.v3i1.6802S. J. Pharm. Sci. 3(1): 68-74


Sign in / Sign up

Export Citation Format

Share Document