scholarly journals Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO)

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2809 ◽  
Author(s):  
Tan ◽  
Huang ◽  
Luo ◽  
Liu ◽  
Cheng ◽  
...  

Soy isoflavones are natural active ingredients of soy plants that are beneficial to many metabolic diseases, especially obesity. Many studies have reported that obesity is closely related to visceral fatty acid metabolism, but the effect has not been well defined. In this study, we show that soy isoflavones improve visceral fatty acid metabolism in diet-induced obese male rats, which was indicated by reduced body weight and visceral fat cell area, as well as suppressed visceral fat synthesis and accelerated fat hydrolysis. We also found that common components of soy isoflavones, daidzein and genistein, were able to inhibit the lipid accumulation process in 3T3-L1 cells. Moreover, we showed that soy isoflavones can promote on AMP-activated protein kinase (AMPK) activity both in vivo and in vitro, which may be implicated in lipid metabolism regulation of soy isoflavones. Our study demonstrates the potential of soy isoflavones as a mechanism for regulating lipid homeostasis in visceral adipose tissue, proven to be beneficial for obesity treatment.

Author(s):  
Hizuru Yamatani ◽  
Kazuhiro Takahashi ◽  
Takayuki Yoshida ◽  
Tomoyoshi Soga ◽  
Hirohisa Kurachi

2019 ◽  
Vol 20 (6) ◽  
pp. 1462 ◽  
Author(s):  
Reem Atawia ◽  
Haroldo Toque ◽  
Mohamed Meghil ◽  
Tyler Benson ◽  
Nicole Yiew ◽  
...  

Visceral adipose tissue (VAT) inflammation and metabolic dysregulation are key components of obesity-induced metabolic disease. Upregulated arginase, a ureahydrolase enzyme with two isoforms (A1-cytosolic and A2-mitochondrial), is implicated in pathologies associated with obesity and diabetes. This study examined A2 involvement in obesity-associated metabolic and vascular disorders. WT and globally deleted A2(−/−) or A1(+/−) mice were fed either a high fat/high sucrose (HFHS) diet or normal diet (ND) for 16 weeks. Increases in body and VAT weight of HFHS-fed WT mice were abrogated in A2−/−, but not A1+/−, mice. Additionally, A2−/− HFHS-fed mice exhibited higher energy expenditure, lower blood glucose, and insulin levels compared to WT HFHS mice. VAT and adipocytes from WT HFHS fed mice showed greater A2 expression and adipocyte size and reduced expression of PGC-1α, PPAR-γ, and adiponectin. A2 deletion blunted these effects, increased levels of active AMPK-α, and upregulated genes involved in fatty acid metabolism. A2 deletion prevented HFHS-induced VAT collagen deposition and inflammation, which are involved in adipocyte metabolic dysfunction. Endothelium-dependent vasorelaxation, impaired by HFHS diet, was significantly preserved in A2−/− mice, but more prominently maintained in A1+/− mice. In summary, A2 is critically involved in HFHS-induced VAT inflammation and metabolic dysfunction.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Eung Ju Kim ◽  
Hong Seog Seo ◽  
Sungeun Kim ◽  
Jin Oh Na ◽  
Jae Hyoung Park ◽  
...  

Background: Visceral adipose tissue is thought to confer increased cardiovascular risk through leukocyte infiltration and increased adipose macrophage activity. Previous positron emission tomography (PET) studies using fluorodeoxyglucose (FDG) demonstrated that increased FDG uptake could reflect the severity of inflammation in atherosclerotic plaque. We hypothesized that active atherosclerotic change in the major arteries would accompany increased inflammation within visceral fat and it could be detected in humans using combined FDG PET/computed tomography (CT). Methods: We observed 44 consecutive subjects with cardiovascular disease. For all of them, an one-hour PET/CT (from brain to foot) was performed after injection of FDG (370–555 MBq). FDG uptake in the aorta or its major branches was evaluated visually and semiquantitatively. Maximal standard uptake values (SUV) of the highest regions of interest were calculated in the subcutaneous fat and visceral fat area, separately. Results: Significant FDG uptake in the arterial wall was noted in 21 patients (plaque positive; PP group), all of whom have experienced acute cardiovascular events (acute coronary syndrome or ischemic stroke) within a week. The other 23 patients (plaque negative; PN group) had chronic stable angina or asymptomatic carotid stenosis. Visceral fat SUV was significantly higher as compared to subcutaneous fat SUV (0.49± 0.15 vs. 0.15± 0.05, p< 0.001) in PP group, whereas there was no significant difference in PN group (0.18± 0.07 vs. 0.16± 0.03, p= 0.622). When we compared two groups, PP group showed higher visceral fat SUV than PN group (p< 0.001). In terms of subcutaneous fat SUV, the results were similar in two groups (p= 0.773). Conclusions: We demonstrated that atherosclerotic plaque inflammation was associated with increased inflammation within visceral fat. Our results need to be confirmed by comparison with histologic or other imaging findings. Further evaluation to determine whether metabolic activity of visceral adipose tissue is a marker or mediator of vascular inflammation is also needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas J. Carruthers ◽  
Clarissa Strieder-Barboza ◽  
Joseph A. Caruso ◽  
Carmen G. Flesher ◽  
Nicki A. Baker ◽  
...  

AbstractDysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.


2019 ◽  
Vol 11 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Sergio De los Santos ◽  
Luis Antonio Reyes-Castro ◽  
Ramón Mauricio Coral-Vázquez ◽  
Juan Pablo Méndez ◽  
Marcela Leal-García ◽  
...  

AbstractObjective:To determine whether (-)-epicatechin (Epi) could decrease visceral adipose tissue and improve the metabolic profile of male offspring rats, after maternal obesity was induced by a high-fat diet (HFD).Design:Maternal obesity in albino Wistar rats was induced with a HFD, whereas male offspring were fed with chow diet throughout the study. Eight male offspring per group, from different litters, were randomly assigned to the experimental or to the control groups. In the experimental group, Epi was administered at a dose of 1 mg/kg of body weight to the male offspring twice daily for two weeks, beginning at postnatal day (PND).Main measures:Weight of visceral adipose tissue, adipocyte size, and several metabolic parameters.Results:Epi administration in the male offspring induced a significant decrease in the amount of visceral fat (11.61 g less, P < 0.05) and in the size of adipose cells (28% smaller, P < 0.01). Besides, Epi was able to decrease insulin, leptin, and Homeostasis Model Assessment -Insulin Resistance (HOMA-IR) (P < 0.05), as well as triglycerides, when the experimental group was compared to the untreated male offspring of obese rats (P < 0.01).Conclusions:Epi administration can reverse the negative effects that maternal obesity has on the male offspring. This could be because Epi reduces the amount of visceral fat and improves metabolic profile.


2019 ◽  
Vol 59 (4) ◽  
pp. 1463-1472 ◽  
Author(s):  
B. Scazzocchio ◽  
R. Varì ◽  
A. Silenzi ◽  
S. Giammarioli ◽  
A. Masotti ◽  
...  

Adipocyte ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 98-118 ◽  
Author(s):  
María Calderon-Dominguez ◽  
Joan F. Mir ◽  
Raquel Fucho ◽  
Minéia Weber ◽  
Dolors Serra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document