scholarly journals Eco-Friendly Extraction and Characterisation of Nutraceuticals from Olive Leaves

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3481 ◽  
Author(s):  
Cinzia Benincasa ◽  
Ilaria Santoro ◽  
Monica Nardi ◽  
Alfredo Cassano ◽  
Giovanni Sindona

Olive tree (Olea europaea L.) leaf, a waste by-product of the olive oil industry, is an inexpensive and abundant source of biophenols of great interest for various industrial applications in the food supplement, cosmetic, and pharmaceutical industries. In this work, the aqueous extraction of high-added value compounds from olive leaves by using microfiltered (MF), ultrapure (U), and osmosis-treated (O) water was investigated. The extraction of target compounds, including oleuropein (Olp), hydroxytyrosol (HyTyr), tyrosol (Tyr), verbascoside (Ver), lutein (Lut), and rutin (Rut), was significantly affected by the characteristics of the water used. Indeed, according to the results of liquid chromatography tandem mass spectrometry, the extracting power of microfiltered water towards rutin resulted very poor, while a moderate extraction was observed for oleuropein, verbascoside, and lutein. On the other hand, high concentrations of hydroxytyrosol were detected in the aqueous extracts produced with microfiltered water. The extraction power of ultrapure and osmosis-treated water proved to be very similar for the bio-active compounds oleuropein, verbascoside, lutein, and rutin. The results clearly provide evidence of the possibility of devising new eco-friendly strategies based on the use of green solvents which can be applied to recover bioactive compounds from olive leaves.

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1177
Author(s):  
Fereshteh Safarzadeh Markhali ◽  
José A. Teixeira ◽  
Cristina M. R. Rocha

The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.


Beverages ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 45
Author(s):  
Vasileios M. Pappas ◽  
Achillia Lakka ◽  
Dimitrios Palaiogiannis ◽  
Eleni Bozinou ◽  
George Ntourtoglou ◽  
...  

Olive leaves (OLL), an agricultural waste by-product, are considered a significant bioresource of polyphenols, known as bioactive compounds. This study evaluates the pulsed electric field (PEF) technique for the extraction of polyphenols from OLL. The study parameters included a series of “green” solvents (ethanol, water as well as mixtures of them at a 25% step gradient) and different input values for the pulse duration of PEF. The phytochemical extraction degree was evaluated using total phenol concentration (Folin–Ciocalteu method) and high-performance liquid chromatography (HPLC) analyses, while the antioxidant activity was assessed using differential scanning calorimetry (DSC). The results obtained from the PEF extracts were compared with those of the extracts produced without the PEF application. The highest PEF effect was observed for aqueous ethanol, 25% v/v, using a pulse duration of 10 μs. The increase in the total polyphenols reached 31.85%, while the increase in the specific metabolites reached 265.67%. The recovery in polyphenols was found to depend on the solvent, the pulse duration of treatment and the structure of the metabolites extracted.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 377
Author(s):  
Bomi Ryu ◽  
Kyung-Hoon Shin ◽  
Se-Kwon Kim

Fish muscle, which accounts for 15%–25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 236
Author(s):  
Dimitrios Lampakis ◽  
Prodromos Skenderidis ◽  
Stefanos Leontopoulos

The interest in using plant by-product extracts as functional ingredients is continuously rising due to environmental and financial prospects. The development of new technologies has led to the achievement of aqueous extracts with high bioactivity that is preferable due to organic solvents nonuse. Recently, widely applied and emerging technologies, such as Simple Stirring, Pressure-Applied Extraction, Enzymatic Extraction, Ultrasound-Assisted Extraction, Pulsed Electric Fields, High Hydrostatic Pressure, Ohmic Heating, Microwave Assistant Extraction and the use of “green” solvents such as the deep eutectic solvents, have been investigated in order to contribute to the minimization of disadvantages on the extraction of bioactive compounds. This review is focused on bioactive compounds derived from pomegranate (Punica granatum) peels and highlighted the most attractive extraction methods. It is believed that these findings could be a useful tool for the pomegranate juices industry to apply an effective and economically viable extraction process, transforming a by-product to a high added value functional product.


2021 ◽  
Vol 11 (9) ◽  
pp. 3921
Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

The use of unmanned aerial robots has increased exponentially in recent years, and the relevance of industrial applications in environments with degraded satellite signals is rising. This article presents a solution for the 3D localization of aerial robots in such environments. In order to truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a 3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to obtain pose estimations that are computed onboard the aerial platform. Experimental results show the feasibility of the approach in terms of accuracy, robustness and computational efficiency.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 982
Author(s):  
Xue-Mei Yang ◽  
Yu Hui ◽  
Lv-Quan Zhao ◽  
Dao-Hong Zhu ◽  
Yang Zeng ◽  
...  

Insect galls are the abnormal growth of plant tissues induced by a wide variety of galling insects and characterized by high concentrations of auxins and cytokinins. It remains unclear whether the auxins and cytokinins affect the bacterial community structure of insect galls. We determined the concentrations of indoleacetic acid (IAA) as an example of auxin, trans-zeatin riboside (tZR) and isopentenyladenine (iP) as cytokinins in Lithosaphonecrus arcoverticus (Hymenoptera: Cynipidae) galls and the galled twigs of Lithocarpus glaber (Fagaceae) using liquid chromatography–tandem mass spectrometry. Moreover, for the first time, we compared the bacterial community structure of L. arcoverticus galls and galled twigs by high-throughput sequencing, and calculated the Spearman correlation and associated degree of significance between the IAA, tZR and iP concentrations and the bacterial community structure. Our results indicated the concentrations of IAA, tZR and iP were higher in L. arcoverticus galls than in galled twigs, and positively correlated with the bacterial community structure of L. arcoverticus galls. We suggest the high concentrations of IAA, tZR and iP may affect the bacterial community structure of L. arcoverticus galls.


Sign in / Sign up

Export Citation Format

Share Document