scholarly journals Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4202 ◽  
Author(s):  
Huanhuan Xue ◽  
Yifan Jiang ◽  
Hongwei Zhao ◽  
Tobias G. Köllner ◽  
Sumei Chen ◽  
...  

Chrysanthemum morifolium Ramat is an ornamental plant of worldwide cultivation. Like many other species in the family Asteraceae, C. morifolium is a rich producer of secondary metabolites. There are two objectives in this study: (I) to determine and compare the diversity of apolar secondary metabolites among different cultivars of C. morifolium and (II) to compare their properties as antifungal agents. To attain these objectives, we selected 13 cultivars of C. morifolium that are commonly used for making chrysanthemum tea as experimental materials. Leaves at the same developmental stage were collected from respective mature plants and subjected to organic extraction. The extracts were analyzed using gas chromatography–mass spectrometry. A total of 37 apolar secondary metabolites including 26 terpenoids were detected from the 13 cultivars. These 13 cultivars can be largely divided into three chemotypes based on chemical principal components analysis. Next, the extracts from the 13 cultivars were examined in in vitro assays for their antifungal properties against three species of pathogenic fungi: Fusarium oxysporum, Magnaporthe oryzae, and Verticillium dahliae. Significant variability in antifungal activity of the leaf extracts among different cultivars was observed. The 13 cultivars can be divided into four groups based on their antifungal activities, which could be partly correlated to the contents of terpenoids. In short, this study reveals large variations in chemical composition, particularly of terpenoids, of leaf secondary metabolites among different cultivars of C. morifolium and their different abilities in functioning as antifungal agents.

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2083
Author(s):  
Kaige Zhang ◽  
Yifan Jiang ◽  
Hongwei Zhao ◽  
Tobias G. Köllner ◽  
Sumei Chen ◽  
...  

Roots provide anchorage and enable the absorption of water and micronutrients from the soil for plants. Besides these essential functions, roots are increasingly being recognized as an important organ for the production of diverse secondary metabolites. The goal of this study was to investigate the chemical composition and function of terpenoid secondary metabolites in roots of different cultivars of the popular ornamental plant Chrysanthemum morifolium Ramat. Although C. morifolium is known for rich production of secondary metabolites in its flower heads and leaves, the diversity of secondary metabolites in roots remains poorly characterized. In this study, 12 cultivars of C. morifolium were selected for comparative analysis. From their roots, a total of 20 terpenoids were detected, including four monoterpenes, 15 sesquiterpenes, and one diterpene. The cultivar ‘She Yang Hong Xin Ju’ exhibited the highest concentration of total terpenoids at approximately 730 µg·g−1 fresh weight. Most cultivars contained sesquiterpenes as the predominant terpenoids. Of them, (E)-β-farnesene was detected in all cultivars. Based on their terpenoid composition, the 12 cultivars were planed into four groups. To gain insights into the function of root secondary metabolites, we performed bioassays to assess their effects on growth of three species of pathogenic fungi: Fusarium oxysporum, Magnaporthe oryzae, and Verticillium dahliae. Significant variability in antifungal activity of the root extracts among different cultivars were observed. The cultivar ‘Xiao Huang Ju’ was the only cultivar that had significant inhibitory effects on all three species of fungi. Our study reveals the diversity of terpenoids in roots of C. morifolium and their function as a chemical defense against fungi.


2020 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Tia Setiawati ◽  
Alma Ayalla ◽  
Mohamad Nurzaman ◽  
Valentina A. Kusumaningtyas ◽  
Ichsan Bari

The chrysanthemum plant (Chrysanthemum morifolium Ramat.) contains many secondary metabolites such as flavonoids and various volatile compounds that can be utilized as drugs. Tissue culture can be an alternative to enhance the production of certain secondary metabolite. The study aimed to determine the types of secondary metabolites that contained in shoot culture, callus and field plants of C. morifolium. The research method was exploration in the laboratory to analyze and compare the content of secondary metabolite from shoot culture, callus and field plants of C. morifolium. Callus was induced by explants of C. morifolium plantlet stems and leaves respectively on MS medium with an addition of 3 ppm 2,4-D + 2 ppm kinetin and 4 ppm 2,4-D. For shoot culture, single nodule explants with one leaf were planted on MS media with the addition of 1 ppm BAP. The secondary metabolite compouds were analized and identified by GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that various types of secondary metabolites contained in shoot culture, callus and field plants of C. morifolium. In callus culture from leaf explants, four compounds from groups of alcohol, acetic acid and organosilicon were identified, whereas in callus culture from stem explants were identified eight compounds from aldehydes, esters, alkanes, and carboxylic acids group. In the shoot culture, nine compounds of alcohol, ketone, aldehyde, cycloalkane and organosilicon group were identified, while in the field plants five compounds were identified from the cycloalkanes, ketones, organoborones and organosilicon group. Some detected compounds have a potential as precursors of alkaloid, phenolic, and flavonoid.Keywords: chrysanthemum, culture, shoots, callus, secondary metabolites.


2021 ◽  
pp. 1-16
Author(s):  
Erika-Alejandra Salinas-Peña ◽  
Martha Mendoza-Rodríguez ◽  
Claudia Velázquez-González ◽  
Carlo Eduardo Medina-Solis ◽  
América Patricia Pontigo-Loyola ◽  
...  

BACKGROUND: The Mexican serviceberry, Malacomeles denticulata, have been used as a successful oral therapy by Mexican communities without enough scientific support. OBJECTIVE: To evaluate the M. denticulata extracts with selective antibacterial properties over dental biofilm bacteria. METHODS: Fruit, Leaf, and Stem of M. denticulata extracts were evaluated with micro-broth dilution method using ATCC bacteria. OD600 values had compared against each positive control (T-student-test). Anaerobically viability had confirmed by Colony-Forming-Units. Thin-Layer-Chromatography was used to identify the number of compounds and phytochemicals to identify secondary metabolites of the selected extracts. RESULTS: Streptococcus mutans showed Minimum-Bactericidal-Concentrations_(MBC) at 30 mg/mL to Fruit, Leaf, and Stem extracts. Periodontal-pathogens Aggregatibacter actinomycetemcomitans serotype b_(MBC = 30 mg/mL_p <  0.01); Fusobacterium nucleatum subsp. nucleatum_(MBC = 30 mg/mL_p<0.001); Parvimonas micra_(MBC = 15 mg/mL_NS); Porphyromonas gingivalis_(MBC = 30 mg/mL_NS); and Prevotella intermedia_(MBC = 3.75 mg/mL_NS) presented higher sensitivity to Leaf-Methanol, than the primary colonizers. Phytochemicals showed positive results to anthraquinones, coumarins, flavonoids, saponins, saponins steroids/triterpenoids, steroids/triterpenes, and tannins/phenols. CONCLUSION: We suggest the natural extracts of fruit and leaf of the Mexican serviceberry for the preventive use over the oral cariogenic or periodontal biofilm species, by their selective antibacterial properties against pathogenic species evaluated in-vitro, and due to the presence of antibacterial secondary metabolites identified as flavonoids and saponins of M. denticulata leaf extracts.


2021 ◽  
Vol 8 (02) ◽  
pp. e62-e68
Author(s):  
Jeeta Sarkar ◽  
Nirmalya Banerjee

AbstractSteroid alkaloid solasodine is a nitrogen analogue of diosgenin and has great importance in the production of steroidal medicines. Solanum erianthum D. Don (Solanaceae) is a good source of solasodine. The aim of this study was to evaluate the effect of different cytokinins on the production of secondary metabolites, especially solasodine in the in vitro culture of S. erianthum. For solasodine estimation, field-grown plant parts and in vitro tissues were extracted thrice and subjected to high-performance liquid Chromatography. Quantitative analysis of different secondary metabolites showed that the amount was higher in the in vitro regenerated plantlets compared to callus and field-grown plants. The present study critically evaluates the effect of the type of cytokinin used in the culture medium on solasodine accumulation in regenerated plants. The highest solasodine content (46.78±3.23 mg g-1) was recorded in leaf extracts of the in vitro grown plantlets in the presence of 6-γ,γ-dimethylallylamino purine in the culture medium and the content was 3.8-fold higher compared to the mother plant.


2016 ◽  
Vol 42 (1) ◽  
pp. 41-48
Author(s):  
Trisha Saha ◽  
Shamim Shamsi

Anthracnose and blight were recorded on Houttuynia cordata Thunb. during April 2013 to December 2013. The isolated fungi from the symptomatic plants were identified as Alterneria alternata (Fr.) Keissler and Colletotrichum gloeosporoides (Penz.) Sacc. Ethanol leaf extracts of five plants viz.,Azadirachta indica L., Citrus limon L., Datura metel L., Sennaalata L. and Tagetes erecta L.were evaluated against the pathogenic fungi A. alternata and C. gloeosporoides at 5%, 10% and 20% concentrations in vitro. A. indica recorded as good inhibitor against the test fungi followed by C. limon, S. alata, D. metel and T.erecta. In vivo treatment also showed that A.indica is the most effective in controlling diseases at 10% concentration. The plants treated with A. indica were fresh and healthy up to one month of observation.J. Asiat. Soc. Bangladesh, Sci. 42(1): 41-48, June 2016


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nivea Pereira de Sa ◽  
Adam Taouil ◽  
Jinwoo Kim ◽  
Timothy Clement ◽  
Reece M. Hoffmann ◽  
...  

AbstractPathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3β-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3β-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1’s substrate specificity and enable the rational design of antifungal agents targeting Sgl1.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Ismail Amri ◽  
Hamrouni Lamia ◽  
Samia Gargouri ◽  
Mohsen Hanana ◽  
Mariem Mahfoudhi ◽  
...  

Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.


2009 ◽  
Vol 2 ◽  
pp. MBI.S995 ◽  
Author(s):  
María Antonieta Gordillo ◽  
Antonio Roberto Navarro ◽  
Lidia María Benitez ◽  
Marta Inés Torres De Plaza ◽  
Maria Cristina Maldonado

Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi ( Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme). These metabolites were recovered from Landy medium (LM) without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM) in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 260 ◽  
Author(s):  
Luna Pollini ◽  
Rachele Rocchi ◽  
Lina Cossignani ◽  
Jordi Mañes ◽  
Dario Compagnone ◽  
...  

In recent years, agricultural and industrial residues have attracted a lot of interest in the recovery of phytochemicals used in the food, pharmaceutical, and cosmetic industries. In this paper, a study on the recovery of phenol compounds from Lycium spp. leaves is presented. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been used with alcoholic and hydroalcoholic solvents. Methanolic UAE was the most successful technique for extracting phenols from Lycium leaves, and we used on leaves from L. barbarum and L. chinense cultivated in Italy. The extracts were then characterized as regards to the antioxidant properties by in vitro assays and the phenol profiling by a high performance liquid chromatography-diode array detector (HPLC-DAD). Chlorogenic acid and rutin were the main phenol compounds, but considerable differences have been observed between the samples of the two Lycium species. For example, cryptochlorogenic acid was found only in L. barbarum samples, while quercetin-3-O-rutinoside-7-O-glucoside and quercetin-3-O-sophoroside-7-O-rhamnoside only in L. chinense leaves. Finally, multivariate statistical analysis techniques applied to the phenol content allowed us to differentiate samples from different Lycium spp. The results of this study confirm that the extraction is a crucial step in the analytical procedure and show that Lycium leaves represent an interesting source of antioxidant compounds, with potential use in the nutraceutical field.


2018 ◽  
Author(s):  
María Fernanda Jiménez-Reyes ◽  
Héctor Carrasco ◽  
Andrés Olea ◽  
Evelyn Silva-Moreno

Fungi are the primary infectious agents in plants causing significant economic losses in agroindustry. Traditionally, these pathogens have been treated with different synthetic fungicides such as hydroxianilides, anilinopyrimidines, and azoles, to name a few. However, the indiscriminate use of these chemicals has increased fungi resistance in plants. Natural products have been researched as a control, and an alternative to these synthetic fungicides since they are not harmful to health and contribute to the environment caring. This review describes plants extracts, essential oils, and active compounds or secondary metabolites as antifungal agents both, in vitro and in vivo. Active compounds have been recently described as the best candidates for the control of phytopathogenic fungi. When metabolized by plants, these compounds concentrations rely on the environmental conditions and pathogens incidence. However, one issue regarding the direct application of these preformed compounds in plants touch upon their low persistence in the environment, and their even lower bioavailability than synthetic fungicides. Hence the challenge is to develop useful formulations based on natural products to increase the compounds solubility facilitating thus their application in the field while maintaining their properties.


Sign in / Sign up

Export Citation Format

Share Document