scholarly journals Efficient Removal of Copper Ion from Wastewater Using a Stable Chitosan Gel Material

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4205 ◽  
Author(s):  
Yang ◽  
Chai ◽  
Zeng ◽  
Gao ◽  
Zhang ◽  
...  

: Gel adsorption is an efficient method for the removal of metal ion. In the present study, a functional chitosan gel material (FCG) was synthesized successfully, and its structure was detected by different physicochemical techniques. The as-prepared FCG was stable in acid and alkaline media. The as-prepared material showed excellent adsorption properties for the capture of Cu2+ ion from aqueous solution. The maximum adsorption capacity for the FCG was 76.4 mg/g for Cu2+ ion (293 K). The kinetic adsorption data fits the Langmuir isotherm, and experimental isotherm data follows the pseudo-second-order kinetic model well, suggesting that it is a monolayer and the rate-limiting step is the physical adsorption. The separation factor (RL) for Langmuir and the 1/n value for Freundlich isotherm show that the Cu2+ ion is favorably adsorbed by FCG. The negative values of enthalpy (ΔH°) and Gibbs free energy (ΔG°) indicate that the adsorption process are exothermic and spontaneous in nature. Fourier transform infrared (FTIR) spectroscopy and x-ray photoelectron spectroscopy (XPS) analysis of FCG before and after adsorption further reveal that the mechanism of Cu2+ ion adsorption. Further desorption and reuse experiments show that FCG still retains 96% of the original adsorption following the fifth adsorption–desorption cycle. All these results indicate that FCG is a promising recyclable adsorbent for the removal of Cu2+ ion from aqueous solution.

2021 ◽  
Author(s):  
Dianjia Zhao ◽  
Wenkang Ye ◽  
Wenxuan Cui

Abstract As an eco-friendly adsorption material, hydroxyapatite (Ha) have received widely attention from researchers owing to their excellent biocompatibility and adsorption performance. However, the inconvenient in separating Ha powder from adsorbed processes following use has limited their application. Herein, a novel alginate-based composite beads encapsulation with cellulose and Ha (named HCA) was designed to remove Cu(II) from aqueous solution. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for characteristic analysis. The impacts of samples compositions, various Cu(II) concentration, adsorption equilibrium time, and regeneration performance on the adsorption process were investigated. The results suggested that beads exhibited their maximum adsorption capacity for Cu(II) was obtained to be 64.14 mg/g at pH=5 for 8 h, best fitted into Langmuir isotherm models and the pseudo-second-order kinetic model. In addition, the biocompatible beads not only increase the sorption sites, but also have good regenerability, would be a promising bio-adsorbent for heavy metal ion removal.


2020 ◽  
Vol 10 (3) ◽  
pp. 220-232
Author(s):  
Nurlisa Hidayati ◽  
Neza Rahayu Palapa ◽  
Bakri Rio Rahayu ◽  
Risfidian Mohadi ◽  
Elfita Elfita ◽  
...  

Layered double hydroxide (LDH) of Zn/Al and citrate-Zn/Al was prepared and used as an adsorbent of Congo red from aqueous solution. LDH was characterized by X-ray, FTIR, and BET analysis. Adsorption of Congo red was studied through kinetic, isotherm, and thermodynamic analyses. Zn/Al LDH has diffraction at 10.29o (003) with interlayer distance 8.59 Å and citrate-Zn/Al LDHs have anomalous diffraction at 7.57o (003) with interlayer distance 11.68 Å. The surface area of citrate-Zn/Al (40.50 m2 g-1) has higher than pristine LDH (1.97 m2 g-1). Adsorption of Congo red was conducted at pH 6 for Zn/Al LDH and at pH 8 for citrate-Zn/Al LDH. Adsorption of Congo red on both LDHs follows the pseudo-second-order kinetic model. The isotherm parameter follows the Freundlich isotherm model with maximum adsorption capacity 166.67 mg g-1 for Zn/Al and 249.99 mg g-1 for citrate-Zn/Al LDH. Adsorption of Congo red on both LDHs was classified as physical adsorption with energy 4.085-4.148 kJ mol-1. 


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


Author(s):  
Conrad Kenechukwu Enenebeaku ◽  
Ikechukwu C. Ukaga ◽  
Nnaemeka John Okorocha ◽  
Benedict Ikenna Onyeachu

The adsorption of methyl violet (MV) dye onto white potato Peel powder from aqueous solution was investigated by analyzing the operational parameters such as contact time, adsorbent dosage, initial dye concentration, PH and temperature to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MV onto the adsorbent (WPPP) was found to be contact time (120 mins), PH (10.0) and temperature (303K) for an initial MV dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MV) dye fitted best and well to the freundlich isotherm model. The maximum adsorption capacity was found to be 17.13mg/g for the adsorption of MV. The kinetic data conforms to the pseudo – second order kinetic model.


2018 ◽  
Vol 877 ◽  
pp. 33-38 ◽  
Author(s):  
Kartick Lal Bhowmik ◽  
M. Kanmani ◽  
Akash Deb ◽  
Animesh Debnath ◽  
Ranendu Kumar Nath ◽  
...  

A facile co-precipitation method was established for synthesis of mesoporous iron-manganese magnetic bimetal oxide (MIMO) and its adsorption property was studied for removal of toxic metal ion hexavalent chromium from aqueous solution. XRD pattern of MIMO confirms the existence of Fe2O3 and Mn3O4 particle, out of which Mn3O4 is ferrimagnetic in nature. Synthesized MIMO has shown high saturation magnetization (23.08 emu/g), high BET surface area (178.27 m2/g) and high pore volume (0.484 cm3/g), which makes it a potential adsorbent. Adsorption process followed second order kinetic and Langmuir isotherm model. Involvement of intra-particle diffusion is also confirmed from kinetic data, which can be attributed to the mesoporous nature of the MIMO. Cr(VI) adsorption shows high pH dependency and maximum adsorption capacity of 116.25 mg/g is reported at pH 2.0. Electrostatic attraction between anionic chromium species and protonated MIMO surface is the predominant mechanism in this adsorption process.


2017 ◽  
Vol 8 (3) ◽  
pp. 350-359 ◽  
Author(s):  
Danyang Yin ◽  
Zhengwen Xu ◽  
Jing Shi ◽  
Lili Shen ◽  
Zexiang He

Abstract In this study, schorl was used as an effective adsorbent for ciprofloxacin removal from wastewater. The adsorption performance, mechanism and effect of metal ion on sorption were investigated. Adsorption capacity reached a maximum (8.49 mg/g) when the pH value was 5.5. The pseudo-second-order kinetic model and Freundlich model could better describe the experimental data. The negative ΔH (–22.96 KJ/mol) value showed that the adsorption process was exothermic. The results also indicated physical adsorption existed on the adsorption process, which was in agreement with the analysis of X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy. The desorption rate could reach 94%, which suggested that schorl had a good desorption and regeneration performance. Coexisting ions, such as Cu2+ and Al3+, could obviously inhibit adsorption, and the inhibition from Al3+ was significantly higher than that from Cu2+. However, the additional Zn2+ could slightly promote the adsorption.


This research shows a method of elimination of methylene blue from aqueous solutions using PVA/SA/Kaolin Composite. The prepared was characterized by Fourier transform infra red spectroscopy (FTIR), X-Ray diffractogram (XRD), Thermo gravimetric analysis (TGA) and Scanning electron microscopic (SEM). Furthermore, the analyses of batch mode experiments were performed to study the experimental important parameters such as pH, metal ion concentrations, adsorbent dosages and contact time are discussed. From the experimental data, the adsorption isotherms are well described by Langmuir and Freundlich model, the adsorption of methyleneblue was fitted with Freundlich isotherm confirms the physical adsorption phenomena involved in this process. The kinetic parameter was correlated with the pseudo-second-order kinetic model. From the results, it was concluded that the material of PVA/SA/Kaolin Composite is an excellent adsorbent for the removal of methylene blue dye from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document