scholarly journals Brownian Motion and Thermophoresis Effects on MHD Three Dimensional Nanofluid Flow with Slip Conditions and Joule Dissipation Due to Porous Rotating Disk

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 729 ◽  
Author(s):  
Nasser Aedh Alreshidi ◽  
Zahir Shah ◽  
Abdullah Dawar ◽  
Poom Kumam ◽  
Meshal Shutaywi ◽  
...  

This paper examines the time independent and incompressible flow of magnetohydrodynamic (MHD) nanofluid through a porous rotating disc with velocity slip conditions. The mass and heat transmission with viscous dissipation is scrutinized. The proposed partial differential equations (PDEs) are converted to ordinary differential equation (ODEs) by mean of similarity variables. Analytical and numerical approaches are applied to examine the modeled problem and compared each other, which verify the validation of both approaches. The variation in the nanofluid flow due to physical parameters is revealed through graphs. It is witnessed that the fluid velocities decrease with the escalation in magnetic, velocity slip, and porosity parameters. The fluid temperature escalates with heightening in the Prandtl number, while other parameters have opposite impacts. The fluid concentration augments with the intensification in the thermophoresis parameter. The validity of the proposed model is presented through Tables.

2020 ◽  
Vol 66 ◽  
pp. 157-171 ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1199 ◽  
Author(s):  
Jing Zhu ◽  
Yaxin Xu ◽  
Xiang Han

The velocity and thermal slip impacts on the magnetohydrodynamics (MHD) nanofluid flow and heat transfer through a stretched thin sheet are discussed in the paper. The no slip condition is substituted for a new slip condition consisting of higher-order slip and constitutive equation. Similarity transformation and Lie point symmetry are adopted to convert the derived governed equations to ordinary differential equations. An approximate analytical solution is gained through the homotopy analysis method. The impacts of velocity slip, temperature jump, and other physical parameters on flow and heat transfer are illustrated. Results indicate that the first-order slip and nonlinear slip parameters reduce the velocity boundary layer thickness and Nusselt number, whereas the effect on shear stress is converse. The temperature jump parameter causes a rise in the temperature, but a decline in the Nusselt number. With the increase of the order, we can get that the error reaches 10 − 6 from residual error curve. In addition, the velocity contours and the change of skin friction coefficient are computed through Ansys Fluent.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abdullah Dawar ◽  
Ebenezer Bonyah ◽  
Saeed Islam ◽  
Ahmed Alshehri ◽  
Zahir Shah

The nanofluids can be used in the subsequent precise areas like chemical nanofluids, environmental nanofluids, heat transfer nanofluids, pharmaceutical nanofluids, drug delivery nanofluids, and process/extraction nanofluids. In short, the number of engineering and industrial applications of nanofluid technologies, as well as their emphasis on particular industrial applications, has been increased recently. Therefore, this exploration is carried out to analyze the nanofluid flow past a rotating disk with velocity slip and convective conditions. The water-based spherical-shaped nanoparticles of copper, alumina, and titanium have been considered in this analysis. The modeled problem has been solved with the help of homotopic technique. Convergence of the homotopic technique is shown with the help of the figure. The role of the physical factors on radial and tangential velocities, temperature, surface drag force, and heat transfer rate are displayed through figures and tables. The outcomes demonstrate that the surface drag force of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has been reduced with a greater magnetic field. The radial and tangential velocities of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2, and pure water have been augmented via magnetic parameter. The radial velocity of the water-based spherical-shaped nanoparticle of Cu has been augmented via nanoparticle volume fraction, whereas reduced for the Al2O3 and TiO2 nanoparticles. The tangential velocity of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has reduced via nanoparticle volume fraction. Also, the variations in radial and tangential velocities are greater for slip conditions as compared to no-slip conditions.


2021 ◽  
Author(s):  
Gurrala Thirupathi ◽  
Kamatam Govardhan ◽  
Ganji Narender

The magnetohydrodynamics (MHD) stagnation point Casson nanofluid flow towards stretching surface with velocity slip and convective boundary condition has been investigated in this article. Effects of thermal radiation, viscous dissipation, heat source and chemical reaction have also been incorporated. Using appropriate similarity transformation Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) and shooting technique along with Adams–Moulton method of order four has been used to obtain the numerical results. Different physical parameters effects on velocity, temperature and concentration of nanofluid flow have been presented graphically and discussed in detail. Numerical values of the skin friction coefficient, Nusselt number and Sherwood number are also and discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Umar ◽  
Rizwan Akhtar ◽  
Zulqurnain Sabir ◽  
Hafiz Abdul Wahab ◽  
Zhu Zhiyu ◽  
...  

In this manuscript, a computational paradigm of technique shooting is exploited for investigation of the three-dimensional Eyring-Powell fluid with activation energy over a stretching sheet with slip arising in the field of fluid dynamics. The problem is modeled and resulting nonlinear system of PDEs is transformed into nonlinear system of ODEs using well-known similarity transformations. The strength of shooting based computing approach is employed to analyze the dynamics of the system. The proposed technique is well-designed for different scenarios of the system based on three-dimensional non-Newtonian fluid with activation energy over a stretching sheet. Slip condition is also incorporated to enhance the physical and dynamical analysis of the system. The proposed results are compared with the bvp4C method for the correctness of the solver. Graphical and numerical illustrations are used to envisage the behavior of different proficient physical parameters of interest including magnetic parameter, stretching rate parameter, velocity slip parameter, Biot number on velocity, and Lewis number on temperature and concentration.


Author(s):  
Shafiq Ahmad ◽  
Muhammmad Naveed Khan ◽  
Sohail Nadeem ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Abstract This manuscript presents a study of three-dimensional MHD Maxwell nanofluid flow across a slendering stretched surface with Joule heating. The impact of binary chemical reactions, heat generation, thermal radiation, and thermophoretic effect is also taken into consideration. The multiple slip boundary conditions are utilized at the boundary of the surface. The appropriate similarity variable is used to transfer the flow modeled equations into ODEs, which are numerically solved by the utilization of the MATLAB bvp4c algorithm. The involved parameter's impact on the concentration, velocity, and temperature distribution are scrutinized with graphs. The transport rates (mass, heat) are also investigated using the same variables, with the results reported in tabulated form. It is seen that the fluid relaxation, magnetic, and wall thickness characteristics diminish the velocities of fluid. Further, the velocity, concentration, and temperature slip parameters reduce the velocities of fluid, temperature, and concentration distribution. The results are compared to existing studies and showed to be in dependable agreement.


2019 ◽  
Vol 97 (8) ◽  
pp. 856-863 ◽  
Author(s):  
Syed Muhammad Raza Shah Naqvi ◽  
Taseer Muhammad ◽  
Hyun Min Kim ◽  
Tariq Mahmood ◽  
Adnan Saeed ◽  
...  

Three-dimensional Darcy–Forchheimer flow of nanoliquid due to a rotating disk subject to multiple slip conditions is examined in this study. Thermophoresis and Brownian motion along with heat and mass transfer are incorporated. Slip conditions of velocity, concentration, and temperature are executed. Similarity results are established via MATLAB routine bvp4c. Graphs of velocities, temperature, and concentration are sketched to discuss the impacts of several influential parameters. Numerical values of skin frictions and local Sherwood and Nusselt numbers are calculated and inspected. Our findings display that concentration and temperature are enhanced for larger thermophoresis parameter.


Author(s):  
Mohammed Almakki ◽  
Sharadia Dey ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

We investigate entropy generation in unsteady three-dimensional axisymmetric MHD nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a chemical reaction. The conservation equations were solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account when the nanofluid particle volume fraction on the boundary in passively controlled. The results show that as the Hartman number increases, both the Nusselt number and the Sherwood number decrease whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with the physical parameters.


2014 ◽  
Vol 92 (10) ◽  
pp. 1249-1257 ◽  
Author(s):  
M.F. El-Sayed ◽  
N.T. Eldabe ◽  
M.H. Haroun ◽  
D.M. Mostafa

The nonlinear electrohydrodynamic Kelvin–Helmholtz instability of two superposed viscoelastic Walters B′ dielectric fluids in the presence of a tangential electric field is investigated in three dimensions using the potential flow analysis. The method of multiple scales is used to obtain a dispersion relation for the linear problem, and a nonlinear Ginzburg–Landau equation with complex coefficients for the nonlinear problem. The linear and nonlinear stability conditions are obtained and discussed both analytically and numerically. In the linear stability analysis, we found that the fluid velocities and kinematic viscosities have destabilizing effects, and the electric field, kinematic viscoelasticities, and surface tension have stabilizing effects; and that the system in the three-dimensional disturbances is more stable than in the corresponding case of two-dimensional disturbances. While in the nonlinear analysis, for both two- and three-dimensional disturbances, we found that the fluid velocities, surface tension, and kinematic viscosities have destabilizing effects, and the electric field, kinematic viscoelasticities have stabilizing effects, and that the system in the three-dimensional disturbances is more unstable than its behavior in the two-dimensional disturbances for most physical parameters except the kinematic viscosities.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 687 ◽  
Author(s):  
Jamshaid Rahman ◽  
Umair Khan ◽  
Shafiq Ahmad ◽  
Muhammad Ramzan ◽  
Muhammad Suleman ◽  
...  

A mathematical model comprising Darcy Forchheimer effects on the 3D nanofluid flow with engine oil as a base fluid containing suspended carbon nanotubes (CNTs) is envisioned. The CNTs are of both types i.e., multi-wall carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). The flow is initiated by an exponentially stretched surface. The impacts of Cattaneo–Christov heat flux along with velocity and thermal slip conditions are key factors in the novelty of the defined model. The boundary layer notion is designed to convert the compact form of equations into the component shape. Appropriate transformations lead to differential equations with high nonlinearity. The final non-dimensional system is solved numerically by a “MATLAB” function known as bvp4c. For both CNTs, different graphical sketches are drawn to present the influence of arising parameters versus related profiles. The outcomes show that higher slip parameter boosts the axial velocity, whereas fluid temperature lowers for a sturdier relaxation parameter.


Sign in / Sign up

Export Citation Format

Share Document