scholarly journals Multivalent Ions as Reactive Crosslinkers for Biopolymers—A Review

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1840 ◽  
Author(s):  
Florian Wurm ◽  
Barbara Rietzler ◽  
Tung Pham ◽  
Thomas Bechtold

Many biopolymers exhibit a strong complexing ability for multivalent ions. Often such ions form ionic bridges between the polymer chains. This leads to the formation of ionic cross linked networks and supermolecular structures, thus promoting the modification of the behavior of solid and gel polymer networks. Sorption of biopolymers on fiber surfaces and interfaces increases substantially in the case of multivalent ions, e.g., calcium being available for ionic crosslinking. Through controlled adsorption and ionic crosslinking surface modification of textile fibers with biopolymers can be achieved, thus altering the characteristics at the interface between fiber and surrounding matrices. A brief introduction on the differences deriving from the biopolymers, as their interaction with other compounds, is given. Functional models are presented and specified by several examples from previous and recent studies. The relevance of ionic crosslinks in biopolymers is discussed by means of selected examples of wider use.

1983 ◽  
Vol 56 (5) ◽  
pp. 942-958 ◽  
Author(s):  
Kyosaku Sato

Abstract 1. Ionic bonding of carboxylated SBR with zinc oxide is detectable by means of measurements of the temperature dependence of tan δ. There is an α peak in the region of 60°C at 3.5 Hz. The position and shape of the α peak are strongly dependent on the state of cure of the vulcanizates. Without permanent crosslinking, the α peak is a plateau; as the crosslink density increases, the α peak becomes sharper and shifts to lower temperatures. The presence of carbon black causes the α peak to shift to higher temperatures, regardless of the presence of permanent crosslinks. 2. Ionic bonds in carboxylated SBR reacted with zinc oxide are in the form of ion clusters which function as crosslinks at room temperature. The ionic crosslinks provide carboxylated SBR with high tensile strength in the absence of reinforcing fillers. The presence of carbon black causes the 300% modulus to increase. The ionic crosslinks are labile, and the strength is lost at moderately elevated temperatures. A mixed cure system consisting of both sulfur and zinc oxide provides higher heat resistance than either of the single cure systems.


Soft Matter ◽  
2019 ◽  
Vol 15 (48) ◽  
pp. 9942-9948
Author(s):  
Sohyun Kim ◽  
Tae Hui Kang ◽  
Gi-Ra Yi

Mesoporous silica nanoparticles can be used as an adhesive for hydrogels due to their physical adsorption to polymer chains, in which adhesion energy can be affected by the ratio of mesh size and pore diameter.


2019 ◽  
Vol 944 ◽  
pp. 543-548 ◽  
Author(s):  
Mei Ling Zhou ◽  
Dan Mei Hu ◽  
Yu Jie Shao ◽  
Jing Hong Ma ◽  
Jing Hua Gong

Temperature-responsive hydrogel fibers with bilayer structure were prepared by a microfluidic spinning device with a Y-shaped connector. The bilayer hydrogel fibers include two layer with different chemical composition. One layer is the ionic crosslinking hydrogel of calcium alginate (CA) and the other layer is temperature-responsive hydrogel which is semi-interpenetrating polymer networks (semi-IPN) of linear poly (N-isopropylacrylamide) (PNIPAM) and CA. The bilayer hydrogel fibers were evaluated by morphology observation, tensile stress measurement, temperature-responsive actuation test and equilibrium swelling ratio test. The results show that the prepared hydrogel fibers have obvious double layer structure with different porous structures. The bilayer hydrogel fibers can bend in water at 50 °C and the bending rate is influenced by the diameter of the fiber. Moreover, the diameter of the hydrogel fibers can be controlled by changing the flow rates of spinning fluids.


1995 ◽  
Vol 101 ◽  
pp. 159
Author(s):  
Ferenc Horkay ◽  
Anne-Marie Hecht ◽  
Erik Geissler

2019 ◽  
Vol 56 (9) ◽  
pp. 496-500 ◽  
Author(s):  
Hiroshi Satone ◽  
Kenji Iimura ◽  
Norimasa Minami ◽  
Akio Nasu

1994 ◽  
Vol 376 ◽  
Author(s):  
Alamgir Karim ◽  
S.K. Satija ◽  
P. Gallagher ◽  
J.F. Douglas ◽  
L.J. Fetters

ABSTRACTNeutron reflection is used to compare the swelling of two chemically end-grafted polystyrene brushes having different grafting densities exposed to a theta solvent cyclohexane and to a good solvent toluene. The relative swelling of tie brushes with a variation of solvent quality becomes smaller and the temperature dependence becomes weaker with an increase of grafting density. This type of swelling is very similar to polymer networks where an increase of cross-linking density leads to a decreased range of swelling and diminished dependence of the swelling. Our model density profile fits to the body of both brushes is parabolic in a good solvent so that some fluctuation effects, as found generally in lower density brushes, are obtained as the brush expands.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5154
Author(s):  
Ivan Lukáč ◽  
Branislav Husár ◽  
Martin Danko ◽  
Richard G. Weiss

Benzil (BZ) can be converted almost quantitatively to benzoyl peroxide (BP) in aerated polymer films upon irradiation at >400 nm (i.e., the long-wavelength edge of the n→π* absorption band of BZ, where BP does not absorb). Here, we summarize results for the photoperoxidation of BZ structures with molecular oxygen, principally in glassy polymer matrices. Some of the polymers are doped directly with BZ or its derivatives, and others, contain covalently attached BZ pendant groups from which BP groups are derived. While the decomposition of low-molecular-weight BP doped into polymer films (such as those of polystyrene (PS)) results in a net decrease in polymer molecular weight, thermal decomposition of pendant BP groups is an efficient method for chain crosslinking. Crosslinking of PS films doped with a molecule containing two covalently linked BZ or BP groups proceeds in a similar fashion. Free radicals from the covalently attached BP allow grafting of new monomers, as well. Additionally, the use of radiation filtered through masks has been used to create patterns of polymers on solid surfaces. Crosslinking of photodegradable poly(phenyl vinyl ketone) with BP structures obtained by photoperoxidation of BZ structures for the preparation of photodegradable polymer networks is described as well. In sum, the use of BZ and BP and their derivatives offers simple and convenient routes for modifying polymer chains and, especially, for crosslinking them. Specific applications of each use and process are provided. Although applications with PS are featured here, the methodologies described are amenable to a wide variety of other polymers.


2021 ◽  
pp. 1-22
Author(s):  
Ahmed Ghareeb ◽  
Ahmed Elbanna

Abstract Soft materials, such as rubber and gels, exhibit rate-dependent response where the stiffness, strength and fracture patterns depend largely on loading rates. Thus, accurate modeling of the mechanical behavior requires accounting for different sources of rate-dependence such as the intrinsic viscoelastic behavior of the polymer chains and the dynamic bond breakage and formation mechanism. In this chapter, we extend the QC approach presented in Ghareeb and Elbanna [Journal of the Mechanics and Physics of Solids, 137, 103819 (2020)] to include ratedependent behavior of polymer networks. We propose a homogenization rule for the viscous forces in the polymer chains and update the adaptive mesh refinement algorithm to account for dynamic bond breakage. Then, we use nonlinear finite element framework with predictorcorrector scheme to solve for the nodal displacements and velocities. We demonstrate the accuracy of the method by verifying it against fully discrete simulations for different examples of network structures and loading conditions. We further use the method to investigate the effects of the loading rates on the fracture characteristics of networks with different ratedependent parameters. Finally, We discuss the implications of the extended method for multiscale analysis of fracture in rate-dependent polymer networks.


Sign in / Sign up

Export Citation Format

Share Document