scholarly journals Neoglycosylated Collagen: Effect on Neuroblastoma F-11 Cell Lines

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4361
Author(s):  
Antonella Sgambato ◽  
Valentina Pastori ◽  
Laura Russo ◽  
Simone Vesentini ◽  
Marzia Lecchi ◽  
...  

The regeneration of the nervous system is a challenging task. Currently, regenerative medicine approaches that exploit nature-inspired cues are being studied and hold great promise. The possibility to use protein-based matrices functionalized with small oligo- and monosaccharides is of interest since these can be finely tuned to better mimic the native environment. Collagen has been selected as a promising material that has the potential to be further tailored to incorporate carbohydrates in order to drive cell behavior towards neuroregeneration. Indeed, the grafting of carbohydrates to collagen 2D matrices is proved to enhance its biological significance. In the present study, collagen 2D matrices were grafted with different carbohydrate epitopes, and their potential to drive F-11 neuroblastoma cells towards neuronal differentiation was evaluated. Collagen functionalized with α-glucosides was able to differentiate neuroblastoma cells into functional neurons, while sialyl α-(2→6)-galactosides stimulated cell proliferation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1383-1383
Author(s):  
Jonathan Fish ◽  
Jessica Hulitt ◽  
Marlo Bruno ◽  
Stephan A. Grupp ◽  
Valerie I. Brown

Abstract Biologically targeted cancer agents, including signal transduction inhibitors, have shown great promise in treating hematologic malignancies. However, used as single agents, these drugs may not be curative secondary to innate or acquired cellular resistance. Thus, acute lymphoblastic leukemia (ALL) and other cancer cells may become resistant to rapamycin, an mTOR inhibitor (MTI), following extended exposure to the drug. A strategy to overcome such resistance is to combine targeted agents, and thereby inhibit multiple targets simultaneously. Previously, we have shown activity of MTI in models of both human and murine ALL. In mouse models, treatment of ALL with MTI prolongs survival but may not cure disease. IL-7, a lymphoid growth factor important in the regulation of progenitor B cell development and proliferation, can reverse the inhibitory effects of MTI on human and murine pre-B ALL cells. We wished to further explore the mechanisms by which IL-7-mediated signaling protects ALL cells from the inhibitory effects of MTI, through the investigation of modulators of growth factor signaling in ALL. Thus, we have evaluated the impact of LY294002, an inhibitor of phosphatidyl inositol-3 kinase (PI3K). PI3K is a critical signaling molecule in cell survival and proliferation, with one of its central roles being signal transduction from growth factor receptors to the activation of AKT (an upstream regulator of mTOR). PI3K/AKT pathway over-activation has been implicated in many different cancers. Treatment of ALL cell lines with the PI3K inhibitor LY294002 markedly decreased cell proliferation in a dose-dependent manner. More importantly, the inhibitory effects of LY294002 were additive or synergistic with the inhibitory effects of MTI, and prevented the ability of IL-7 to reverse the inhibitory effects of rapamycin. Treatment of pre-B ALL cell lines with 2.5 μM LY294002 resulted in decreased proliferation to 20–45% of baseline as compared to untreated cells, whereas treatment with a higher dose (5 μM) reduced cell proliferation to 10–20%. Combinations of LY294002 and rapamycin, even at low doses, inhibited cell proliferation to a greater degree than each drug individually. Co-treatment with 2.5 μM LY294002 and low dose rapamycin (1 ng/ml) resulted in profound inhibition of proliferation to <=5%, compared to 20–30% with rapamycin alone. Furthermore, co-treatment with low-dose LY294002 and low-dose rapamycin resulted in greater inhibition than even higher doses of each of these agents individually. While the addition of IL-7 (1 U/ml) to rapamycin-treated cells resulted in the reversal of rapamycin-mediated cell inhibition, the further addition of 2.5 μM LY294002 significantly antagonized this growth factor rescue of MTI-treated ALL cells. The blockade by LY294002 of the IL-7 effect was most apparent in ALL cell lines that were IL-7 dependent, with cell proliferation reduced to <20%. However, the effects were still significant in IL-7 independent cell lines, with proliferation reduced to 20–60%. Similar results were seen using human ALL cell lines. These data suggest that the PI3K signaling pathway serves as a potential rescue pathway from mTOR inhibition, mediating the ability of growth factors to rescue cells from rapamycin;PI3K itself is a therapeutic target for ALL; andcombination therapy with MTI and PI3K inhibitors may be more active than either agent alone.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1453-1453 ◽  
Author(s):  
Parvathi Ranganathan ◽  
Xueyan Yu ◽  
Jessica Hofstetter ◽  
Ramasamy Santhanam ◽  
Sharon Schacham ◽  
...  

Abstract AML is a clonal hematopoietic disorder characterized by genetic and epigenetic alterations. The prognosis of AML is poor highlighting the urgent need for novel therapeutic approaches. Targeting aberrant DNA hypermethylation by using hypomethylating drugs such as decitabine has been recently investigated in AML. Our group reported a relatively effective (47% complete response) single agent decitabine treatment schedule for older AML patients. These results suggested the opportunity to capitalize on this relatively effective and non-toxic treatment by incorporating this compound into novel molecularly targeted approaches. Recent data indicate that targeting nuclear exporter proteins is a novel therapeutic strategy to overcome cancer. In particular, CRM1/XPO1 is the only nuclear exporter involved in the active transport of the majority of tumor suppressor proteins (TSP) [e.g. p53 and FOX03A] out of the nucleus resulting in their inactivation. We recently reported the anti-leukemic activity of oral SINE CRM1/XPO1 Antagonists in AML. SINEs displayed potent anti-proliferative properties, induced apoptosis, cell-cycle arrest and myeloid differentiation in AML cell lines and patient blasts. In addition, treatment of leukemic mice with oral SINE significantly prolongs their survival. By crossing the lists of genes known to be regulated by DNA methylation in AML with the ones whose nuclear transport is XPO1 dependent, we identified important TSPs such as FOXO3A and p21. Here we hypothesize that treatment of AML cells with decitabine will increase the transcription and expression of a subset of TSPs (including FOX03A and p21) whose nuclear anti-leukemic effects could be enhanced by blocking their XPO1 mediated nuclear export using the clinical stage oral SINE (Selinexor). Thus, we expect that the sequential treatment of decitabine followed by Selinexor will be more effective than each drug alone. To confirm this hypothesis first we treated the AML line OCI-AML3 cells with decitabine (500nM) overnight (ovn) followed by Selinexor (200nM, 2 fold lower than IC50) for an additional 24 hours (hrs) and measured cell proliferation using WST-1 assay. Controls include: 1) DMSO ovn +DMSO 24 hours, 2) Selinexor ovn +selinexor 24 hours (200 nM) and 3) decitabine ovn + decitabine 24 hrs (500nM). AML cells that were treated first with decitabine followed by Selinexor exhibited a higher cytotoxicity (absorbance (Abs) 0.7) than cells treated with either decitabine (Abs 1.36), Selinexor (Abs 1, p=0.006) or DMSO (Abs 1.7). Similar results were observed with the MV4-11 cell line. Next we measured the candidate TSPs (FOX03A and p21) mRNA and protein expression in OCI-AML-3 and MV4-11 cell lines after 24 hrs of decitabine treatment. We found a significant up-regulation of p21 in decitabine versus DMSO treated cells (MV4-11, Fold change (FC) 4.67±1.4; OCI-AML3, FC 3.98±1.19, p<0.05). We also detected a modest up-regulation of FOXO3A in both cell lines treated with decitabine when compared to the DMSO controls (MV4-11, FC 2.56±0.74 and OCI-AML3, FC 1.5±0.23, p<0.05). These results were confirmed also at the protein level by using western blot. Next, we asked whether ectopic up-regulation of p21 (mimicking decitabine effects) in OCI-AML3 cells could re-capitulate the decitabine enhancing antileukemic effects of Selinexor. Overexpression of p21 followed by Selinexor (200nM) for 24 hrs resulted in a larger decrease of cell proliferation (Abs 0.5) with respect to controls (Abs 0.7, p<0.05) using the WST assay. Similar results were observed for the MV4-11 cell line. Finally, we tested the efficacy of the sequential decitabine–Selinexor in vivo using the MV4-11 xenograft model. Treatment began one week after leukemic cell inoculation in 4 different cohorts; 1) Vehicle, 2) decitabine i.p. twice weekly (BIW) (0.4mg/kg); 3) Selinexor BIW (20mg/kg by oral gavage) and 4) decitabine BIW i.p (0.4 mg/kg) followed by Selinexor (10 mg/kg BIW). We found no difference in median survival time (MST) between vehicle and decitabine only treated mice. As expected, Selinexor alone treated mice have significantly improved MST at 36.5 days vs. 28.5 days, vehicle, p=<0.01). Most importantly, the sequential treatment of decitabine followed by Selinexor significantly improved MST compared to Selinexor alone 47 vs 36.5, p=0.008). These pre-clinical results hold great promise for the use of this combination in human clinical trials in AML. Disclosures: Schacham: Karyopharm: Membership on an entity’s Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Garzon:Karyopharm: Research Funding.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54809 ◽  
Author(s):  
Sokratis Theocharatos ◽  
David J. Wilkinson ◽  
Sarah Darling ◽  
Bettina Wilm ◽  
Simon E. Kenny ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
pp. 12-24
Author(s):  
Mabao YUAN ◽  
Hanjiao HANG ◽  
Lubin YAN ◽  
Xuanjie HUANG ◽  
Ziyang SANG ◽  
...  

[Objective] Neuroblastoma is the most common pediatric neuroendocrine tumor. Patients with high-risk neuroblastoma have poor clinical outcomes. Understanding the mechanisms underlying neuroblastoma progression could help identify potential therapeutic targets. This study aimed to explore the roles of itchy E3 ubiquitin-protein ligase (ITCH) in neuroblastoma progression using neuroblastoma cell lines and xenograft models of neuroblastoma. [Methods] ITCH-silencing or overexpressing neuroblastoma cells were established using two different human neuroblastoma cell lines, SK-N-AS and SH-SY5Y. In vitro and in vivo experiments were carried out to determine the effects of ITCH on neuroblastoma cell behaviors. The dual-luciferase reporter assay and co-transfection experiments were applied to determine the interaction of ITCH and miR-145-5p during neuroblastoma progression. [Results] In both cell lines, ITCH overexpression significantly promotes the proliferation, migration, and invasion capacities of neuroblastoma cells, while ITCH silencing with ShITCH suppressed neuroblastoma cell proliferation and induced apoptosis. Moreover, overexpression of ITCH decreased 51% and 54% the protein expressions of large tumor suppressor kinase 1 (LATS1), and inhibited 59% and 66% the phosphorylation of Yes-associated protein (YAP), concomitant with 2.02-fold and 2.56-fold increased expressions of cell proliferation marker Ki67 and 2.51-fold and 2.26-fold elevated levels of anti-apoptosis marker Bcl2 in SK-N-AS and SH-SY5Y cells, respectively. The dual-luciferase reporter assay demonstrated that ITCH interacted with miR-145-5p. Further in vitro and xenograft experiments showed that ITCH negatively affected the tumor-suppressive effect of miR-145-5p. [Conclusion] ITCH promotes neuroblastoma cell proliferation and metastasis by inhibiting LATS1 and promoting YAP nuclear translocation.


2017 ◽  
Vol 33 (8) ◽  
pp. 646-654 ◽  
Author(s):  
Mahmoud Abudayyak ◽  
Tuba Altincekic Gurkaynak ◽  
Gül Özhan

Cobalt oxide (Co3O4) nanoparticles have applications in nanomedicine and nanotechnology; therefore, any possible adverse effects require thorough investigation. The present study investigated the effects of Co3O4 nanoparticles on four different cell lines: liver, HepG2 hepatocellular carcinoma cells; lung, A549 lung carcinoma cells; gastrointestinal, Caco-2 colorectal adenocarcinoma cells; and nervous system, SH-SY5Y neuroblastoma cells. A difference was observed in cell sensitivity toward Co3O4 nanoparticles. Co3O4 nanoparticles were taken up by all the cell types. However, no cell death was observed in HepG2, Caco-2, or SH-SY5Y cells; only A549 cells showed cytotoxicity at relatively high exposure concentrations. Co3O4 nanoparticles did not induce DNA damage or apoptosis in the cell lines tested except in A549. Interestingly, Co3O4 nanoparticles induced cellular oxidative damage in all cell types except Caco-2, resulting in increased malondialdehyde and 8-hydroxydeoxyguanosine levels and decreased glutathione levels. According to our results, it could be indicated that high concentrations of Co3O4 nanoparticles affected the pulmonary system but were unlikely to affect the liver, nervous system, or gastrointestinal system. Co3O4 nanoparticles might be safely used for industrial, commercial, and nanomedical applications if dose rates are adjusted depending on the route of exposure. However, further in vivo and in vitro studies are required to confirm the safety of Co3O4 nanoparticles.


2010 ◽  
Vol 32 (1-2) ◽  
pp. 77-86
Author(s):  
Maria Valeria Corrias ◽  
Claudio Gambini ◽  
Andrea Gregorio ◽  
Michela Croce ◽  
Gaia Barisione ◽  
...  

Background: The Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD), involved in nervous system development, has been linked to tumor progression and metastasis in several tumors. No information is available on ALCAM expression in neuroblastoma, a childhood neoplasia originating from the sympathetic nervous system.Methods: ALCAM expression was analysed by immunofluorescence and immunohistochemistry on differentiated neuroblastoma cell lines and on archival specimens of stroma-poor, not MYCN amplified, resectable neuroblastoma tumors, respectively.Results: ALCAM is variously expressed in neuroblastoma cell lines, is shed by metalloproteases and is cleaved by ADAM17/TACE in vitro. ALCAM is expressed in neuroblastoma primary tumors with diverse patterns of subcellular localization and is highly expressed in the neuropil area in a subgroup of cases. Tumor specimens showing high expression of ALCAM at the membrane of the neuroblast body or low levels in the neuropil area are associated with relapse (P = 0.044 and P < 0.0001, respectively). In vitro differentiated neuroblastoma cells show strong ALCAM expression on neurites, suggesting that ALCAM expression in the neuropil is related to a differentiated phenotype.Conclusions: Assessment of ALCAM localization by immunohistochemistry may help to identify patients who, in the absence of negative prognostic factors, are at risk of relapse and require a more careful follow-up.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeuni Yu ◽  
Soon Ki Sung ◽  
Chi Hyung Lee ◽  
Mihyang Ha ◽  
Junho Kang ◽  
...  

Glioma is the most common primary malignant tumor that occurs in the central nervous system. Gliomas are subdivided according to a combination of microscopic morphological, molecular, and genetic factors. Glioblastoma (GBM) is the most aggressive malignant tumor; however, efficient therapies or specific target molecules for GBM have not been developed. We accessed RNA-seq and clinical data from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, and the GSE16011 dataset, and identified differentially expressed genes (DEGs) that were common to both GBM and lower-grade glioma (LGG) in three independent cohorts. The biological functions of common DEGs were examined using NetworkAnalyst. To evaluate the prognostic performance of common DEGs, we performed Kaplan-Meier and Cox regression analyses. We investigated the function of SOCS3 in the central nervous system using three GBM cell lines as well as zebrafish embryos. There were 168 upregulated genes and 50 downregulated genes that were commom to both GBM and LGG. Through survival analyses, we found that SOCS3 was the only prognostic gene in all cohorts. Inhibition of SOCS3 using siRNA decreased the proliferation of GBM cell lines. We also found that the zebrafish ortholog, socs3b, was associated with brain development through the regulation of cell proliferation in neuronal tissue. While additional mechanistic studies are necessary, our results suggest that SOCS3 is an important biomarker for glioma and that SOCS3 is related to the proliferation of neuronal tissue.


2020 ◽  
Vol 20 (4) ◽  
pp. 295-305
Author(s):  
Halah Obaid ◽  
Sunand Kannappan ◽  
Mehul Gupta ◽  
Yibing Ruan ◽  
Chunfen Zhang ◽  
...  

Background: Atypical teratoid rhabdoid tumor of the central nervous system (CNS ATRT) is a malignancy that commonly affects young children. The biological mechanisms contributing to tumor aggressiveness and resistance to conventional therapies in ATRT are unknown. Previous studies have shown the activity of insulin like growth factor-I receptor (IGF-1R) in ATRT tumor specimens and cell lines. IGF-1R has been shown to cross-talk with other receptor tyrosine kinases (RTKs) in a number of cancer types, leading to enhanced cell proliferation. Objective: This study aims to evaluate the role of IGF-1 receptor cross-talk in ATRT biology and the potential for therapeutic targeting. Methods: Cell lines derived from CNS ATRT specimens were analyzed for IGF-1 mediated cell proliferation. A comprehensive receptor tyrosine kinase (RTK) screen was conducted following IGF-1 stimulation. Bioinformatic analysis of publicly available cancer growth inhibition data to identify correlation between IC50 of a VEGFR inhibitor and IGF-1R expression. Results: Comprehensive RTK screen identified VEGFR-2 cross-activation following IGF-1 stimulation. Bioinformatics analysis demonstrated a positive correlation between IC50 values of VEGFR inhibitor Axitinib and IGF-1R expression, supporting the critical influence of IGF-1R in modulating response to anti-angiogenic therapies. Conclusion: Overall, our data present a novel experimental framework to evaluate and utilize receptor cross-talk mechanisms to select effective drugs and combinations for future therapeutic trials in ATRT.


Author(s):  
Ting La ◽  
Lei Jin ◽  
Xiao Ying Liu ◽  
Ze Hua Song ◽  
Margaret Farrelly ◽  
...  

The deubiquitinase cylindromatosis (CYLD) functions as a tumor suppressor inhibiting cell proliferation in many cancer types including melanoma. Here we present evidence that a proportion of melanoma cells are nonetheless addicted to CYLD for survival. The expression levels of CYLD varied widely in melanoma cell lines and melanomas in vivo, with a subset of melanoma cell lines and melanomas displaying even higher levels of CYLD than melanocyte lines and nevi, respectively. Strikingly, although short hairpin RNA (shRNA) knockdown of CYLD promoted, as anticipated, cell proliferation in some melanoma cell lines, it reduced cell viability in a fraction of melanoma cell lines with relatively high levels of CYLD expression and did not impinge on survival and proliferation in a third type of melanoma cell lines. The decrease in cell viability caused by CYLD knockdown was due to induction of apoptosis, as it was associated with activation of the caspase cascade and was abolished by treatment with a general caspase inhibitor. Mechanistic investigations demonstrated that induction of apoptosis by CYLD knockdown was caused by upregulation of receptor-interacting protein kinase 1 (RIPK1) that was associated with elevated K63-linked polyubiquitination of the protein, indicating that CYLD is critical for controlling RIPK1 expression in these cells. Of note, microRNA (miR) profiling showed that miR-99b-3p that was predicted to target the 3-untranslated region (3-UTR) of the CYLD mRNA was reduced in melanoma cell lines with high levels of CYLD compared with melanocyte lines. Further functional studies confirmed that the reduction in miR-99b-3p expression was responsible for the increased expression of CYLD in a highly cell line-specific manner. Taken together, these results reveal an unexpected role of CYLD in promoting survival of a subset of melanoma cells and uncover the heterogeneity of CYLD expression and its biological significance in melanoma.


2002 ◽  
Vol 158 (4) ◽  
pp. 731-740 ◽  
Author(s):  
Rita Gallo ◽  
Francesca Zazzeroni ◽  
Edoardo Alesse ◽  
Claudia Mincione ◽  
Ugo Borello ◽  
...  

Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.


Sign in / Sign up

Export Citation Format

Share Document