scholarly journals Enhancement of Phthalocyanine Mediated Photodynamic Therapy by Catechin on Lung Cancer Cells

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4874
Author(s):  
Giftson J. Senapathy ◽  
Blassan P. George ◽  
Heidi Abrahamse

Worldwide, lung cancer remains one of the leading cancers with increasing mortality rates. Though chemotherapy for lung cancer is effective, it is always accompanied by unavoidable and grave side effects. Photodynamic therapy (PDT), using novel photosensitizers, is an advanced treatment method with relatively few side effects. Plant products are emerging as potent photosensitizers (PSs). The dose-dependent effect of Catechin (CA) (20–100 µM) on cellular morphological changes, cell viability, cytotoxicity, proliferation, DNA damage and apoptosis were studied on A549 adenocarcinoma alveolar basal epithelial cells. The effect of CA, along with Zinc phthalocyanine PS at 680 nm and 5 J/cm2 fluency was also studied. As the doses of CA increased, the results showed a pattern of increased cytotoxicity, accompanied by decreased cell viability and proliferation in A549 cells. Also, at 52 µM (IC50), CA in combination with PS significantly increased the cytotoxicity, DNA damage, and apoptosis, as compared to control and PS alone, treated cells in PDT experiments. These findings leave a possible thread that CA can be used in the application of phyto-photodynamic therapy of cancer in future.

2017 ◽  
Author(s):  
Jong-Woon Shin ◽  
Sae-Bom Kwon ◽  
Yesol Bak ◽  
Sangku Lee ◽  
Do-Young Yoon

Abstract(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as a dual specific phosphatase 1/6 or MAPK inhibitor. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on cell viability were investigated in the non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460. We confirmed that BCI significantly inhibited the cell viability of NCI-H1299 compared to those of NCI-H460 and A549 cells. The anti-cancer effects of BCI were evaluated by MTS assay, annexin V-fluorescein isothiocyanate/propidium iodide staining, cell cycle analysis, reverse transcription-PCR, western blotting, and JC-1 staining in NCI-H1299 cells. BCI induced cellular morphological changes and inhibited viability of NCI-H1299 cells in a dose-dependent manner. BCI enhanced Bax expression and induced processing of caspase-9, caspase-3, and poly (ADP-ribose) polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. BCI also down-regulated Bcl-2 expression but enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. In addition, BCI did not modulate death receptor expression or the extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. On the basis of these results, we conclude that BCI induces apoptosis through a mediated intrinsic pathway, but not extrinsic pathway in NCI-H1299 cells. These results suggest that BCI can be used as a therapeutic agent in lung cancer.


2017 ◽  
Vol 13 (2) ◽  
pp. 204-220 ◽  
Author(s):  
Mans Broekgaarden ◽  
Ruud Weijer ◽  
AlbertC. van Wijk ◽  
RuudC. Cox ◽  
MaartenR. Egmond ◽  
...  

Author(s):  
Elham Hoveizi ◽  
Fatemeh Fakharzadeh Jahromi

Background: The development of effective anticancer drugs is a significant health issue. Previous studies showed that members of the benzimidazole family have anticancer effects on several cancers Objectives: The present study investigated the cytotoxic effect of flubendazole on A549 human lung cancer cells. Methods: The A549 cells were treated with flubendazole at 1, 2, 5, and 10 µM concentrations for three days. Cell viability was measured by the MTT assay and Acridine orange staining. Also, the expressions of P62 and Beclin -1 were analyzed by qRT-PCR analysis. Results: Cell viability of A549 cells, in a concentration-dependent manner, showed significant differences between the treatment and control groups, and the IC50 value was determined to be 2 µM. Also, flubendazole reduced the expression of P62 and increased the expression of Beclin 1 in treated cells. Conclusions: Flubendazole induces cell death in A549 cells in a dose and time-dependent manner and can offer new factors in lung cancer therapeutic strategies.


Author(s):  
Wei-Zhen Liu ◽  
Nian Liu

Propofol has been widely used in lung cancer resections. Some studies have demonstrated that the effects of propofol might be mediated by microRNAs (miRNAs). This study aimed to investigate the effects and mechanisms of propofol on lung cancer cells by regulation of miR-1284. A549 cells were treated with different concentrations of propofol, while transfected with miR-1284 inhibitor, si-FOXM1, and their negative controls. Cell viability, migration, and invasion, and the expression of miR-1284, FOXM1, and epithelial‐mesenchymal transition (EMT) factors were detected by CCK-8, Transwell, qRT-PCR, and Western blot assays, respectively. In addition, the regulatory and binding relationships among propofol, miR-1284, and FOXM1 were assessed, respectively. Results showed that propofol suppressed A549 cell viability, migration, and invasion, upregulated E-cadherin, and downregulated N-cadherin, vimentin, and Snail expressions. Moreover, propofol significantly promoted the expression of miR-1284. miR-1284 suppression abolished propofol-induced decreases of cell viability, migration, and invasion, and increased FOXM1 expression and the luciferase activity of FOXM1-wt. Further, miR-1284 negatively regulated FOXM1 expression. FOXM1 knockdown reduced cell viability, migration, and invasion by propofol treatment plus miR-1284 suppression. In conclusion, our study indicated that propofol could inhibit cell viability, migration, invasion, and the EMT process in lung cancer cells by regulation of miR-1284.


2020 ◽  
Vol 13 (7) ◽  
pp. 137 ◽  
Author(s):  
Sarah Chamberlain ◽  
Houston D. Cole ◽  
John Roque ◽  
David Bellnier ◽  
Sherri A. McFarland ◽  
...  

Intra-operative photodynamic therapy (IO-PDT) in combination with surgery for the treatment of non-small cell lung cancer and malignant pleural mesothelioma has shown promise in improving overall survival in patients. Here, we developed a PDT platform consisting of a ruthenium-based photosensitizer (TLD1433) activated by an optical surface applicator (OSA) for the management of residual disease. Human lung adenocarcinoma (A549) cell viability was assessed after treatment with TLD1433-mediated PDT illuminated with either 532- or 630-nm light with a micro-lens laser fiber. This TLD1433-mediated PDT induced an EC50 of 1.98 μM (J/cm2) and 4807 μM (J/cm2) for green and red light, respectively. Cells were then treated with 10 µM TLD1433 in a 96-well plate with the OSA using two 2-cm radial diffusers, each transmitted 532 nm light at 50 mW/cm for 278 s. Monte Carlo simulations of the surface light propagation from the OSA computed light fluence (J/cm2) and irradiance (mW/cm2) distribution. In regions where 100% loss in cell viability was measured, the simulations suggest that >20 J/cm2 of 532 nm was delivered. Our studies indicate that TLD1433-mediated PDT with the OSA and light simulations have the potential to become a platform for treatment planning for IO-PDT.


Author(s):  
Konstantin Komoshvili ◽  
Tzippi Beker ◽  
Jacob Levitan ◽  
Asher Yahalom ◽  
Ayan Barbora ◽  
...  

Efficiently targeted cancer therapy without causing detrimental side effects is necessary for alleviating patient care and improving survival rates. This paper presents observations of morphological changes in H1299 human lung cancer cells following MMW irradiation (75 – 105 GHz) at a non-thermal power density of 0.2 mW/cm2, investigated over 14 days of subsequent physiological incubation following exposure. Microscopic analyses of physical parameters measured indicate MMW irradiation induces significant morphological changes characteristic of apoptosis and senescence. The Immediate short-term stress responses translate into long-term effects, retained over the duration of the experiment(s); reminiscent of the phenomenon of Accelerated Cellular Senescence (ACS) achieving terminal tumorigenic cell growth. Further, results were observed to be treatment-specific in energy (dose) dependent manner and were achieved without the use of chemotherapeutic agents, ionizing radiation or thermal ablation employed in conventional methods; thereby overcome associated side effects. Adaptation of the experimental parameters of this study in clinical oncology concomitant with current developmental trends of non-invasive medical endoscopy alleviates MMW therapy as an effective treatment procedure for human non-small cell lung cancer (NSLC)


2004 ◽  
Vol 47 (4) ◽  
pp. 313-315 ◽  
Author(s):  
Hana Kolářová ◽  
Martin Huf ◽  
Jaroslav Maceček ◽  
Pavla Nevřelová ◽  
Marek Tomečka ◽  
...  

Photodynamic therapy of cancer uses the interaction of sensitizers and light to destroy cancer cells. In this study we tested the cellular uptake of meso-tetrakis(4-sulfonatophenyl)porphine (TPPS4) and its complex PdTPPS4 in the presence or absence of 2–hydroxypropyl-cyclodextrins (hpCDs) on G361 human melanoma cells. Self-fluorescence in G361 cells were measured by Perkin-Elmer LS50B luminometer equipped with well plate reader accessory. Morphological changes in cells have been evaluated using inversion fluorescent microscope Olympus IX 70 and image analysis. The uptake of the sensitizer PdTPPS4 at the given time interval from 1 to 48 hours is markedly higher than the uptake of TPPS4. The highest uptake was found for sensitizer PdTPPS4 in combination with hpβCD. TPPS4 and PdTPPS4 especially in the supramolecular complex with nontoxic cyclodextrin carriers represent efficient sensitizers for photodynamic therapy in vitro on G361 cells.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5679
Author(s):  
Yongjie Chen ◽  
Lijuan Bai ◽  
Pu Zhang ◽  
Hua Zhao ◽  
Qianxiong Zhou

Photoactivated chemotherapy (PACT) is a novel cancer treatment method that has drawn increasing attention due to its high selectivity and low side effects by spatio-temporal control of irradiation. Compared with photodynamic therapy (PDT), oxygen-independent PACT is more suitable for treating hypoxic tumors. By finely tuning ligand structures and coordination configurations, many Ru(II) complexes can undergo photoinduced ligand dissociation, and the resulting Ru(II) aqua species and/or free ligands may have anticancer activity, showing their potential as PACT agents. In this mini-review, we summarized the progress in Ru(II)-based PACT agents, as well as challenges that researchers in this field still face.


Sign in / Sign up

Export Citation Format

Share Document