scholarly journals One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1785
Author(s):  
Zhe Jiang ◽  
Nian Li ◽  
Pei-Ying Li ◽  
Bo Liu ◽  
Hua-Jie Lai ◽  
...  

Chitosan is a kind of biodegradable natural polysaccharide, and it is a very promising adsorber material for removing metal ions from aqueous solutions. In this study, chitosan-based magnetic adsorbent CMC@Fe3O4 was synthesized by a one-step method using carboxymethyl chitosan (CMC) and ferric salts under relatively mild conditions. The Fe3O4 microspheres were formed and the core–shell structure of CMC@Fe3O4 was synthesized in the meantime, which was well characterized via SEM/TEM, XRD, VSM, FT-IR, thermo gravimetric analysis (TGA), XPS, size distribution, and zeta potential. The effects of initial arsenic concentration, pH, temperature, contact time, and ionic strength on adsorption quantity of inorganic arsenic was studied through batch adsorption experiments. The magnetic adsorbent CMC@Fe3O4 displayed satisfactory adsorption performance for arsenic in water samples, up to 20.1 mg/g. The optimal conditions of the adsorption process were pH 3.0, 30−50 °C, and a reaction time of 15 min. The adsorption process can be well described by pseudo-second-order kinetic model, suggesting that chemisorption was main rate-controlling step. The Langmuir adsorption model provided much higher correlation coefficient than that of Freundlich adsorption model, indicating that the adsorption behavior is monolayer adsorption on the surface of the magnetic adsorbents. The above results have demonstrated that chitosan-based magnetic adsorbent CMC@Fe3O4 is suitable for the removal of inorganic arsenic in water.

2013 ◽  
Vol 15 (2) ◽  
pp. 29-39 ◽  
Author(s):  
M. Kumar ◽  
R. Tamilarasan

This paper presents the feasibility for the removal of methyl orange (MO) dye from aqueous solution using an activated carbon prepared from Prosopis juliflora bark. Batch adsorption experiments were carried out as a function of pH, contact time, adsorbate concentration, adsorbent dosage and temperature. The commonly applicable isotherms namely Freundlich and Langmuir equations are used for the prediction of isotherm parameters. A comparison of linear least-square method and a trial-and-error non-linear method are examined in Freundlich and Langmuir (Four forms) isotherms. The nature of adsorption isotherm feasibility was evaluated with dimensionless separation factors (RL). The dynamics of adsorption process was analyzed with Lagergren’s Pseudo-first order and Pseudo-second order kinetic equations. Thermodynamic parameters like the change in enthalpy (ΔHo), change in entropy (ΔSo) and change in Gibbs free energy (ΔGo) were evaluated and ΔGo shows a negative value whereas ΔHo shows the positive value indicating that the adsorption process was spontaneous and endothermic in nature. The functional group characterization of the adsorbent was done using Fourier transform infrared spectroscopy (FTIR). The thermal stability of activated carbon was analyzed using Thermo gravimetric analysis (TGA) and Differential thermal analysis (DTA).


2019 ◽  
Vol 68 (7) ◽  
pp. 495-508
Author(s):  
Zhongmin Li ◽  
Wanwan Wu ◽  
Wenyan Jiang ◽  
Guangtao Wei ◽  
Yunshang Li ◽  
...  

Abstract The adsorption of Ni(II) by a thermo-sensitive adsorbent of methylcellulose/calcium alginate beads (CAMCBs) was studied using batch adsorption tests to determine the adsorption process and properties, the effects of adsorbent dosage, initial concentration, adsorption time and temperature. The adsorption process was further investigated using kinetics, isotherms and thermodynamic methods. The kinetics and isotherms studies showed the adsorption of Ni(II) on CAMCBs was fitted by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, respectively. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic at lower temperature, and the entropy of the adsorption process was negative. In the study of regeneration, it was confirmed that under the temperature of 60 °C, the desorption agent of CaCl2 with concentration of 3 g·L−1 was more conducive to the desorption of Ni(II) from CAMCBs. Both adsorption capacity and mechanical strength of the used CAMCBs could be basically recovered to the level of fresh CAMCBs after desorption. The prepared CAMCBs had a good property of adsorption of Ni(II) and an excellent regeneration performance.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Nabul Sardar ◽  
Nazia Rahman ◽  
Shahnaz Sultana ◽  
Nirmal Chandra Dafader

Abstract This study focuses on the adsorption of hazardous Cr (III) and Cu (II) ions from aqueous solution by applying modified waste polypropylene (PP) fabric as an adsorbent. Pre-irradiation technique was performed for grafting of sodium styrene sulfonate (SSS) and acrylic acid (AAc) onto the PP fabric. The monomer containing 8% SSS and 16% AAc in water was used. Graft yield at 30 kGy radiation dose was 390% when 4% NaCl was added as additive. The prepared adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The influences of different parameters including pH, contact time, temperature and initial metal ion concentration were also investigated. The equilibrium adsorption data were better fitted to the Langmuir isotherm model with maximum monolayer adsorption capacity 384.62 mg/g for Cr (III) and 188.68 mg/g for Cu (II) ions. The kinetic data were better explained by pseudo first-order kinetic model having good matching between the experimental and theoretical adsorption capacity. The adsorption process was spontaneous, endothermic and thermodynamically feasible. Furthermore, investigation of desorption of metal ions and reuse of the adsorbent suggesting that the adsorbent is an efficient and alternative material in the removal of Cr (III) and Cu (II) from aqueous media.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Uzma ◽  
Sultan Alam ◽  
Hanif Subhan ◽  
Luqman Ali Shah ◽  
Noor Saeed Khattak

Abstract Removal of noxious dyes from waste water is highly desirable for the safety of humans, aquatic life and natural environment. The issue was addressed in the present work by one pot fabrication of polyacrylamide/Gum Arabic (pAAm/GA) composite hydrogel which was applied as sorbent for basic blue-3 (BB3) eradication. The synthesis of the material was confirmed by scanning electron microscopy (SEM), Fourier Transformed Infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). Besides, the same techniques also evidenced BB3 uptake by the hydrogel. In distilled water, the swelling capacities of the hydrogel was investigated at pH 7 and the nature of water diffusion into the hydrogel was probed from the resultant data. The composite hydrogel reached equilibrium point in 24 h after which no appreciable water absorption occurred. The adsorption of BB3 by the hybrid material was comprehensively investigated which involved the effect of contact time, temperature and pH on the sorption capacity of the hybrid sorbent. The obtained data fitted well into pseudo second order kinetic model and the adsorption took place in three consecutive kinetic phases. Moreover, sorption thermodynamics revealed non spontaneous and endothermic nature of BB3 sorption accompanied with increase in degree of order.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xinrui Feng ◽  
Shaoshuai Sun ◽  
Ge Cheng ◽  
Lei Shi ◽  
Xiangshan Yang ◽  
...  

The magnetic adsorption material of polyaniline (PANI) with amino functional group combined with CuFe2O4 (CuFe2O4/PANI nanocomposite) has been described in this work. It has been characterized by TEM, XRD, XPS, BET, FTIR, and VSM, respectively. Significantly, it exhibits extremely high maximum adsorption capacity (322.6 mg/g) for removal of uranyl ions from wastewater at a pH of 4. The adsorption process is consistent with the quasisecond-order kinetic equation, and the isotherm and kinetic data are accurately described by the Langmuir isothermal adsorption model. Furthermore, the magnetic CuFe2O4/PANI displays stable adsorption performance for uranyl ions after five cycles of recovery in acid medium, which indicates it possesses good recovery due to its magnetism and excellent regeneration ability for reusability.


Author(s):  
Nnaemeka John Okorocha ◽  
J. Josphine Okoji ◽  
Charles Osuji

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22.96mg/g and 7.77mg/g for the adsorption of CV and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0obtained for both dyes indicate the spontaneous nature of the adsorption process while the positive values of ΔH0and ΔS0obtained indicated the endothermic nature and increased randomness during the adsorption process respectively for the adsorption of CV and CR onto ALP. Based on the results obtained such as good adsorption capacity, rapid kinetics, and its low cost, ALP appears to be a promising adsorbent material for the removal of CV and CR dye stuff from aqueous media.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2554
Author(s):  
Panlong Dong ◽  
Hailin Liu ◽  
Shengrui Xu ◽  
Changpo Chen ◽  
Suling Feng ◽  
...  

To remove the pollutant methylene blue (MB) from water, a sheet-like skeleton carbon derived from shaddock peels (SPACs) was prepared by NaOH activation followed by a calcination procedure under nitrogen protection in this study. Characterization results demonstrated that the as-prepared SPACs displayed a hierarchically porous structure assembled with a thin sheet-like carbon layer, and the surface area of SPAC-8 (activated by 8 g NaOH) was up to 782.2 m2/g. The as-prepared carbon material presented an ultra-fast and efficient adsorption capacity towards MB due to its macro-mesoporous structure, high surface area, and abundant functional groups. SPAC-8 showed ultrafast and efficient removal capacity for MB dye. Adsorption equilibrium was reached within 1 min with a removal efficiency of 99.6% at an initial concentration of 100 mg/g under batch adsorption model conditions. The maximum adsorption capacity for MB was up to 432.5 mg/g. A pseudo-second-order kinetic model and a Langmuir isotherm model described the adsorption process well, which suggested that adsorption rate depended on chemisorption and the adsorption process was controlled by a monolayer adsorption, respectively. Furthermore, column adsorption experiments showed that 96.58% of MB was removed after passing through a SPAC-8 packed column with a flow rate of 20 mL/min, initial concentration of 50 mg/L, and adsorbent dosage of 5 mg. The as-prepared adsorbent displays potential value in practical applications for dye removal due to its ultrafast and efficient adsorption capacity.


2019 ◽  
Vol 80 (11) ◽  
pp. 2218-2231
Author(s):  
George O. Achieng ◽  
Chrispin O. Kowenje ◽  
Joseph O. Lalah ◽  
Stephen O. Ojwach

Abstract The preparation and applications of Tilapia (Oreochromis niloticus) fish scale biochars (FSB) as an adsorbent in the removal of indigo carmine dye (ICD) from aqueous solutions is described. The biochars were prepared through pyrolysis over a temperature range of 200 °C–800 °C and characterized for surface charge, functional groups, thermal stability, particle size and morphology, elemental composition, crystallinity, and surface area by using pHpzc, Fourier transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA), transmission electron microscopy/scanning electron microscopy (TEM/SEM), energy dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) techniques, respectively. Batch experiments were carried out to determine the variation of adsorption process with initial dye concentration, contact time, initial solution pH, adsorbent load, temperature and adsorbent pyrolysis temperature on the removal of the dye. The percentage removal increased with increase in initial dye concentration and adsorbent dosage. A pH of 2 was the most appropriate for the adsorption experiments. The equilibrium data fitted pseudo-first-order kinetics and Freundlich models, while the thermodynamic parameters confirmed that the adsorption process was endothermic.


2020 ◽  
Vol 9 (1) ◽  
pp. 95-104

The impact of sodium hydroxide pretreatment of maize husk on its lead ion removal efficiency was investigated. Pretreatment of maize husk with this alkali increased its surface area and porosity from 528.74 m2/g and 0.477 cm3/g to 721.54 m2/g and 0.642 cm3/g, respectively. Batch adsorption studies were carried out to evaluate the effects of initial pH, adsorbent dose, initial lead ion concentration, initial solution temperature, and contact time on the adsorption process. The maximum removal efficiency of maize husk at pH 5 and adsorbent dose 2 g/L was 62.85 %, which increased to 82.84 % after pretreatment and was attained in 15 min. The adsorption data for the natural and pretreated maize husk were best fitted in the Freundlich isotherm model, with their adsorption intensity (n) having values >1, which indicated that lead ion adsorption onto the adsorbent types was a favorable physical process. The adsorption of lead ions onto the adsorbents followed the pseudo-first-order kinetic model. The experimental adsorption capacities of maize husk (31.43 mg/g) and its modified form (41.22 mg/g) were very close to those obtained from this model (31.03 mg/g and 40.65 mg/g respectively). The ΔH and ΔG values of the adsorption process showed that the adsorption of lead ions by both adsorbents was an endothermic process and occurred spontaneously. Alkali pretreated maize husk can therefore be used as a cheap adsorbent to remove lead ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document