scholarly journals Dragon Fruits as a Reservoir of Natural Polyphenolics with Chemopreventive Properties

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2158
Author(s):  
Paweł Paśko ◽  
Agnieszka Galanty ◽  
Paweł Zagrodzki ◽  
Patraporn Luksirikul ◽  
Dinorah Barasch ◽  
...  

Dragon fruits are a valued source of bioactive compounds with high potential to become a functional food. The aim of the study was to evaluate and compare the chemopreventive potential and chemical composition of fruits harvested in Thailand and Israel. The amount of different compounds in water and methanol extracts and antioxidant activity was investigated. Moreover, cytotoxic activity against cancer and normal cells of skin, prostate, and gastrointestinal origin was performed, accompanied by anti-inflammatory assay based on NO production in RAW 264.7 macrophage model. Additionally, the quenching properties of polyphenols from fruits were determined by the interaction of the main drug carrier in blood human serum (HSA). The chemometric analysis was used to reveal the relationships between the determined parameters. Dragon fruits harvested in Israel revealed higher antioxidant properties and total content of polyphenols and betacyanins when compared to those from Thailand. The examined fruits of both origins showed significant cytotoxic activity toward colon and prostate cancer cells, with no toxic effect on normal cells, but also no anti-inflammatory effect. Moreover, a high binding ability to HSA was observed for water extracts of dragon fruits. All these predestine dragon fruits are the candidates for the attractive and chemopreventive elements of daily diet.

2020 ◽  
Vol 10 (6-s) ◽  
pp. 103-108
Author(s):  
Komlatsè Togbenou ◽  
Kokou Idoh ◽  
Kossivi Dosseh ◽  
Tchazou Kpatcha ◽  
Amégnona Agbonon

Introduction: Annona senegalensis Pers (Annonaceae) and Piliostigma thonningii (Schum.) (Leguminoseae)  are two medicinal plants used, often in combination, in traditional Togolese medicine for the treatment of diseases with an inflammatory component. Objective: The aim of this study is to evaluate the anti-inflammatory effect of the hydro-ethanolic extract (EHEM) of the combination of A. senegalensis and P. thonningii (1: 1, m: m). Methods: The ovalbumin-induced allergic airway asthma model was used. Animals made asthmatic were treated with EHEM at doses of 250 and 500 mg / kg. Inflammation markers including histamine, nitric oxide (NO), vascular leakage, leukocyte infiltration in the airways, and malondialdehyde (MDA), were measured. Results: Compared to the SNT group, EHEM inhibits the infiltration of the airways by leukocytes (850,00 × 103 ± 50 cells / mL vs 1830 × 103 ± 53,85 cells / mL for ST500 mg / kg, P <0,05). It inhibited vascular permeability to Evans Blue (10,40 ± 0,270 μg / mL vs ST500, p<0,05). It inhibited histamine release (13,95 ± 0,937 μg / mL vs 32,78 ± 1,044 μg / mL, p<0,05) and NO production (0,211 ± 0,008 Μm vs 0,315 ± 0,022 μM, p<0,05). It finally inhibited MDA production (14,66 ± 0,533 nM / mL vs 9,014 ± 0,366 nM / mL and 7,149 ± 0,300 nM / mL, p<0,05) in lung tissue. Conclusion: Our results suggest that EHEM inhibits OVA-induced inflammation. These results justify the use of this combination of plants in traditional Togolese medicine. Keywords: Inflammation, malondialdehyde, Annona senegalensis, Piliostigma thonningii.


2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110559
Author(s):  
Le Minh Ha ◽  
Ngo Thi Phuong ◽  
Nguyen Thi Thu Hien ◽  
Pham Thi Tam ◽  
Do Thi Thao ◽  
...  

In this study, we aimed at evaluating in vitro and in vivo anti-inflammatory activity of various extracts of the rhizomes of Globba pendula Roxb. Three extracts ( n-hexane, ethyl acetate, and water) were screened for their inhibitory effect on NO production by lipopolysaccharide-stimulated RAW 264.7 macrophages. The ethyl acetate extract of G. pendula rhizomes (EGP) showed a potential effect with an IC50 value of 32.45 µg/mL. For in vivo study, the ethyl acetate extract was further investigated for its anti-inflammatory effect using collagen antibody-induced arthritic mice (CAIA). The level of arthritis in experimental mice significantly reduced ( P < .05) after treatment with EGP at a dose of 500 mg/kg body weight (b.w.). This study also revealed that EGP is orally non-toxic. Ethyl p-methoxy cinamate was identified as the main constituent of EGP, which may result in its anti-inflammatory effect.


Author(s):  
Mansi L. Patil ◽  
Swati S. Gaikwad ◽  
Naresh J. Gaikwad

Introduction: Pain is an immunological response to any infection or inflammation and long term use of pain management therapy includes use of Nonsteroidal anti-inflammatory drugs which is associated with occurrence of toxicity as well as gastrointestinal bleeding. Therefore, the investigation of new analgesic and anti-inflammatory agents remains a major challenge. Aims: The objective of this research study is to undergo the pharmacological evaluation of newly synthesized benzoxazole derivatives. These novel derivatives were evaluated for anti-nociceptive, anti-inflammatory and cytotoxic activity using various in-vivo and ex-vivo methods. Methods: The study was carried out using swiss mice (adult male) weighing between 20gm to 30gm and were divided into groups containing (n=6) six animals in each group for treatment. The anti-nociceptive activity was performed by using 0.1ml of 0.6% v/v acetic acid as nociception inducer and evaluated by the diminished number of abdominal writhes. The anti-inflammatory activity was done using 0.1 ml of 2% w/v Carrageenan induced paw edema method was observed which was evaluated by calculating the percent maximum possible effect. Histopathological evaluation and cytotoxic activity of the compounds was carried out. Results: The results of this research study revealed that synthesized derivatives (a, b, c, d and e) showed promising anti-nociceptive and anti-inflammatory effect along significantly higher cytotoxic activity in MCF-7 cell lines. Conclusion: It can be concluded that synthesized derivatives (a, b, c, d and e) have potential anti-nociceptive and anti-inflammatory effect along with cytotoxic activity and certain modification in structure may result in potent activity.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 306 ◽  
Author(s):  
Francesca Oppedisano ◽  
Roberta Macrì ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
...  

Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.


Author(s):  
Madhu Cs ◽  
Sharada Ac

Objective: The objective of the present study is to determine the anti-inflammatory effect of a partially purified lectin from phloem exudates againstpaw edema mice model.Methods: Partially purified lectin was prepared by phloem exudates in phosphate buffer saline followed by ammonium sulfate precipitation anddialysis. Anti-inflammatory activity was determined against carrageenan-induced mice model and inhibition of nitric oxide (NO) production wasdetermined.Results: Partially purified lectin exhibited promising anti-inflammatory activity at 50 mg/kg b.w. by reducing the edema volume significantly up to64% (**p<0.01) against control mice. Decrease in myeloperoxidase activity and NO production in paw exudates was observed up to 55.90 (*p<0.05)and 47.22% (*p<0.05), respectively, and this supports the anti-inflammatory property of the partially purified lectin.Conclusion: This finding indicated that further studies needed to purify and characterize a novel lectin from Praecitrullus fistulosus for elucidating themolecular mechanism of anti-inflammatory activity.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2335
Author(s):  
Seung A Kim ◽  
Chae Young Lee ◽  
Ankita Mitra ◽  
Haeyeop Kim ◽  
Byoung Young Woo ◽  
...  

There is a growing need to develop anti-inflammatory drugs to regulate inflammatory responses. An extract of Huberia peruviana Cogn. had the best inhibitory effect on nitric oxide (NO) production in screening process undertaken in our laboratory. However, the anti-inflammatory effect of Huberia peruviana Cogn. methanol extract (Hp-ME) has not been studied. In this study, the anti-inflammatory effect of Hp-ME was assessed by using an NO assay, RT-PCR, luciferase reporter gene activity assay, western blotting assay, HCl/EtOH-induced acute gastritis model, and LPS-induced acute lung injury model. The phytochemical components of Hp-ME were determined through LC-MS/MS analysis. When RAW264.7 and HEK293T cells were treated with Hp-ME, NO production was decreased dose-dependently without cytotoxicity and the mRNA levels of iNOS, COX-2, and TNF-α were decreased. In a luciferase assay, the activity of transcription factors, NF-κB in TRIF or MyD88-overexpressing HEK293T cells was extremely reduced by Hp-ME. The western blotting analysis indicated that Hp-ME has anti-inflammatory effects by inhibiting the phosphorylation of Src. Hp-ME showed anti-inflammatory effects on in vivo models of HCl/EtOH-induced gastritis and LPS-induced acute lung injury. LC-MS/MS revealed that Hp-ME contains several anti-inflammatory flavonoids. The final findings of this study imply that Hp-ME could be used as an anti-inflammatory drug in several inflammatory diseases.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 741 ◽  
Author(s):  
Jiwon Jang ◽  
Jong Sub Lee ◽  
Young-Jin Jang ◽  
Eui Su Choung ◽  
Wan Yi Li ◽  
...  

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.


2012 ◽  
Vol 108 (9) ◽  
pp. 1562-1573 ◽  
Author(s):  
Victor Pallarès ◽  
Damien Calay ◽  
Lídia Cedó ◽  
Anna Castell-Auví ◽  
Martine Raes ◽  
...  

Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.


2020 ◽  
Vol 21 (14) ◽  
pp. 4850 ◽  
Author(s):  
Cristiane F. Villarreal ◽  
Dourivaldo S. Santos ◽  
Pedro S. S. Lauria ◽  
Kelly B. Gama ◽  
Renan F. Espírito-Santo ◽  
...  

Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations—no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125–25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5003
Author(s):  
Simona-Rebeca Ignat ◽  
Sorina Dinescu ◽  
Judit Váradi ◽  
Ferenc Fenyvesi ◽  
Thi Le Phuong Nguyen ◽  
...  

Liver fibrosis results from chronic liver injury and is characterized by the accumulation of extracellular matrix in excess driven by hepatic stellate cells (HSCs) activation. Chrysin (CHR) is a natural flavonoid that is limited by its low solubility to exert its anti-inflammatory, antioxidant and anti-fibrotic properties. The aim of this study was to investigate the biocompatibility of CHR complexes with two cyclodextrins (CDs)-(2-hydroxypropyl)-β-cyclodextrin (HPBCD) and random methyl-β-cyclodextrin (RAMEB), and their potential to induce anti-inflammatory, antioxidant and anti-fibrotic effects. Biocompatibility of the complexes was evaluated on Huh7 and LX2 cell lines: MTT and Live/Dead tests indicated the cell viability and an LDH test showed the cytotoxicity. Immunohistochemical staining of Nuclear Factor Kappa B (NF-κB) nuclear translocation was performed to evaluate the anti-inflammatory effect of the complexes. Oxygen Radical Absorbance assay, Superoxide Dismutase activity and Glutathione Peroxidase (GPx) assays indicated the antioxidant properties of the chrysin complexes. Finally, the complexes’ anti-fibrotic potential was evaluated at the protein and gene level of α-sma. In HSCs, CDs induced higher cytotoxicity correlated with lower cell viability than CHR–CD. The 1:1 CHR–RAMEB pretreatment avoided p65 translocation. The 1:2 CHR–RAMEB complex increased ORAC values, improved SOD activity and produced the highest stimulation of GPx activity. CHR–RAMEB reduced α-sma expression at lower concentration than CHR–HPBCD, proving to be more efficient. In conclusion, both CHR–CD complexes proved to be biocompatible, but CHR–RAMEB showed improved anti-inflammatory, antioxidant and anti-fibrotic effects that could recommend its further use in liver fibrosis treatment.


Sign in / Sign up

Export Citation Format

Share Document