scholarly journals Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza Sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2196
Author(s):  
Yue Song ◽  
Meng Jiang ◽  
Huali Zhang ◽  
Ruiqing Li

As one of the common abiotic stresses, chilling stress has negative effects on rice growth and development. Minimization of these adverse effects through various ways is vital for the productivity of rice. Nanoparticles (NPs) serve as one of the effective alleviation methods against abiotic stresses. In our research, zinc oxide (ZnO) NPs were utilized as foliar sprays on rice leaves to explore the mechanism underlying the effect of NPs against the negative impact of chilling stress on rice seedlings. We revealed that foliar application of ZnO NPs significantly alleviated chilling stress in hydroponically grown rice seedlings, including improved plant height, root length, and dry biomass. Besides, ZnO NPs also restored chlorophyll accumulation and significantly ameliorated chilling-induced oxidative stress with reduced levels of H2O2, MDA, proline, and increased activities of major antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). We further found that foliar application of ZnO NPs induced the chilling-induced gene expression of the antioxidative system (OsCu/ZnSOD1, OsCu/ZnSOD2, OsCu/ZnSOD3, OsPRX11, OsPRX65, OsPRX89, OsCATA, and OsCATB) and chilling response transcription factors (OsbZIP52, OsMYB4, OsMYB30, OsNAC5, OsWRKY76, and OsWRKY94) in leaves of chilling-treated seedlings. Taken together, our results suggest that foliar application of ZnO NPs could alleviate chilling stress in rice via the mediation of the antioxidative system and chilling response transcription factors.

Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2074
Author(s):  
Razu Ahmed ◽  
Mohd Yusoff Abd Samad ◽  
Md. Kamal Uddin ◽  
Md. Abdul Quddus ◽  
M. A. Motalib Hossain

Growing vegetables can be seen as a means of improving people’s livelihoods and nutritional status. Tomatoes are one of the world’s most commonly planted vegetable crops. The nutritional arrangement of the tomato depends on the quantity and type of nutrients taken from the growing medium, such assoil and foliar application; therefore, an adequate amount of macro- and micro-nutrients, including zinc (Zn) and zinc oxide nanoparticles (ZnO-NPs), are crucial for tomato production. Zinc foliar spraying is one of the effective procedures that may improve crop quality and yield. Zinc oxide nanoparticles (ZnO-NPs) are represented as a biosafety concern for biological materials. Foliar application of Zn showed better results in increasing soluble solids(TSS), firmness, titratable acidity, chlorophyll-a, chlorophyll-b, ascorbic acid, amount of lycopene. Researchers have observed the effect of nanoparticles of zinc oxide on various crops, including tomatoes. Foliar spraying of ZnO-NPs gave the most influential results in terms of best planting parameters, namely plant height, early flowering, fruit yields as well as lycopene content. Therefore, more attention should be given to improving quantity and quality as well as nutrient use efficiency of Zn and ZnO-NPs in tomato production. Recent information on the effect of zinc nutrient foliar spraying and ZnO-NPs as a nano fertilizer on tomato productivity is reviewed in this article.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248778
Author(s):  
Fatemeh Pejam ◽  
Zahra Oraghi Ardebili ◽  
Alireza Ladan-Moghadam ◽  
Elham Danaee

There has long been debate about how nanoproducts meet agricultural requirements. This study aimed to investigate tomato responses to the long-time foliar application of zinc oxide nanoparticles (ZnO-NP; 0 and 3 mgl-1) or bulk type (BZnO). Both ZnO-NP and BZnO treatments, especially the nanoform, were significantly capable of improving growth, biomass, and yield. The ZnO-NP treatment upregulated the expression of the R2R3MYB transcription factor by 2.6 folds. The BZnO and ZnO-NP treatments transcriptionally up-regulated WRKY1 gene by 2.5 and 6.4 folds, respectively. The bHLH gene was also upregulated in response to BZnO (2.3-fold) or ZnO-NP (4.7-fold). Moreover, the ZnO-NP application made a contribution to upregulation in the EREB gene whereas the bulk compound did not make a significant change. Upregulation in the HsfA1a gene also resulted from the ZnO-NP (2.8-fold) or BZnO (1.6-fold) supplementation. The MKK2 and CAT genes displayed a similar upregulation trend in response to the supplements by an average of 3-folds. While the application of ZnO-NP slightly down-regulated the histone deacetylases (HDA3) gene by 1.9-fold, indicating epigenetic modification. The supplements, especially the nano-product, enhanced concentrations of K, Fe, and Zn in both leaves and fruits. The concentrations of Chla, Chlb, and carotenoids were increased in response to the BZnO or ZnO-NP treatments. Likewise, BZnO or ZnO-NP mediated an increase in activity of nitrate reductase and proline content in leaves. These treatments increased soluble phenols and phenylalanine ammonia-lyase activity. With a similar trend, the BZnO or ZnO-NP application improved the activities of catalase and peroxidase enzymes. The reinforcement in metaxylem and secondary tissues resulted from the applied supplements. This study provides comprehensive comparative evidence on how ZnO-NPs may remodel the chromatin ultrastructure and transcription program, and confer stress tolerance in crops. This study also underlines the necessity of providing integrated transcriptome and proteome data in future studies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Di Wu ◽  
Yifei Liu ◽  
Jiayin Pang ◽  
Jean Wan Hong Yong ◽  
Yinglong Chen ◽  
...  

Arachis hypogaea (peanut) is a globally important oilseed crop with high nutritional value. However, upon exposure to overnight chilling stress, it shows poor growth and seedling necrosis in many cultivation areas worldwide. Calcium (Ca2+) enhances chilling resistance in various plant species. We undertook a pot experiment to investigate the effects of exogenous Ca2+ and a calmodulin (CaM) inhibitor on growth and photosynthetic characteristics of peanut exposed to low night temperature (LNT) stress following warm sunny days. The LNT stress reduced growth, leaf extension, biomass accumulation, gas exchange rates, and photosynthetic electron transport rates. Following LNT stress, we observed larger starch grains and a concomitant increase in nonstructural carbohydrates and hydrogen peroxide (H2O2) concentrations. The LNT stress further induced photoinhibition and caused structural damage to the chloroplast grana. Exogenous Ca2+ enhanced plant growth following LNT stress, possibly by allowing continued export of carbohydrates from leaves. Foliar Ca2+ likely alleviated the nocturnal chilling-dependent feedback limitation on photosynthesis in the daytime by increasing sink demand. The foliar Ca2+ pretreatment protected the photosystems from photoinhibition by facilitating cyclic electron flow (CEF) and decreasing the proton gradient (ΔpH) across thylakoid membranes during LNT stress. Foliar application of a CaM inhibitor increased the negative impact of LNT stress on photosynthetic processes, confirming that Ca2+–CaM played an important role in alleviating photosynthetic inhibition due to the overnight chilling-dependent feedback.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1619 ◽  
Author(s):  
Marek Kolenčík ◽  
Dávid Ernst ◽  
Martin Urík ◽  
Ľuba Ďurišová ◽  
Marek Bujdoš ◽  
...  

Nano-fertilisers have only recently been introduced to intensify plant production, and there still remains inadequate scientific knowledge on their plant-related effects. This paper therefore compares the effects of two nano-fertilisers on common sunflower production under field conditions. The benefits arising from the foliar application of micronutrient-based zinc oxide fertiliser were compared with those from the titanium dioxide plant-growth enhancer. Both the zinc oxide (ZnO) and titanium dioxide (TiO2) were delivered by foliar application in nano-size at a concentration of 2.6 mg·L−1. The foliar-applied nanoparticles (NPs) had good crystallinity and a mean size distribution under 30 nm. There were significant differences between these two experimental treatments in the leaf surfaces’ trichomes diversity, ratio, width, and length at the flower-bud development stage. Somewhat surprisingly, our results established that the ZnO-NPs treatment induced generally better sunflower physiological responses, while the TiO2-NPs primarily affected quantitative and nutritional parameters such as oil content and changed sunflower physiology to early maturation. There were no differences detected in titanium or zinc translocation or accumulation in the fully ripe sunflower seeds compared to the experimental controls, and our positive results therefore encourage further nano-fertiliser research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256905
Author(s):  
Tahereh Mirakhorli ◽  
Zahra Oraghi Ardebili ◽  
Alireza Ladan-Moghadam ◽  
Elham Danaee

Nanoscience paves the way for producing highly potent fertilizers and pesticides to meet farmer’s expectations. This study investigated the physiological and molecular responses of soybean seedlings to the long-time application of zinc oxide nanoparticles (ZnO NPs) and their bulk type (BZnO) at 5 mg L-1 under the two application methods (I- foliar application; II- soil method). The ZnO NPs/BZnO treatments in a substance type- and method-dependent manner improved plant growth performance and yield. ZnO NPs transactionally upregulated the EREB gene. However, the expression of the bHLH gene displayed a contrary downward trend in response to the supplements. ZnO NPs moderately stimulated the transcription of R2R3MYB. The HSF-34 gene was also exhibited a similar upward trend in response to the nano-supplements. Moreover, the ZnONP treatments mediated significant upregulation in the WRKY1 transcription factor. Furthermore, the MAPK1 gene displayed a similar upregulation trend in response to the supplements. The foliar application of ZnONP slightly upregulated transcription of the HDA3 gene, while this gene showed a contrary slight downregulation trend in response to the supplementation of nutrient solution. The upregulation in the CAT gene also resulted from the nano-supplements. The concentrations of photosynthetic pigments exhibited an increasing trend in the ZnONP-treated seedlings. The applied treatments contributed to the upregulation in the activity of nitrate reductase and the increase in the proline concentrations. ZnO NPs induced the activity of antioxidant enzymes, including peroxidase and catalase by averages of 48.3% and 41%, respectively. The utilization of ZnO NPs mediated stimulation in the activity of phenylalanine ammonia-lyase and increase in soluble phenols. The findings further underline this view that the long-time application of ZnO NPs at low concentrations is a safe low-risk approach to meet agricultural requirements.


2020 ◽  
Author(s):  
Yixuan Wang ◽  
Kunyang Zhuang ◽  
Qingwei Meng ◽  
Chen Meng

Abstract WRKY transcription factors play various important roles in biotic and abiotic stress. In present study, a total of 81 WRKYs in tomato (Solanum lycopersicum) was identified and their gene structure, phylogeny and sub-location were analyzed. Here, we further analyzed their expression and potential roles under chilling stress. Nevertheless, the predicted chloroplast-located WRKYs are failed to be detected in the chloroplast. Then, 27 SlWRKYs with high chilling-induced mRNA levels (more than 3 fold to the control) are selected from these WRKYs. Promoter analysis showed that some cold stress-related cis-acting elements (CBFs binding site) existed in many promoter regions of these chilling response WRKYs (WRKY2, WRKY50, WRKY59 etc.), implying that these WRKY transcription factors may participate in CBFs mediated pathway under chilling stress. The interaction proteins of WRKYs are essential to affect the DNA binding and transcription regulatory activities of WRKYs, thus controlling its downstream genes expression. Therefore, we predicted and analyzed the protein-protein interactions of those chilling related WRKY transcription factors and then speculated the complex regulatory and functional network of WRKY transcription factors under chilling stress. A better understanding of SlWRKYs would be helpful for providing a theoretical basis for further illustrating the regulatory mechanism of SlWRKYs under chilling stress.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 505
Author(s):  
Hamidreza Sharifan ◽  
Xingmao Ma

Zinc (Zn) is a key micronutrient affecting bio-functions of crops. Impacts of foliar application of three forms of Zn-containing agrichemicals on the physiology of rice seedlings and their uptake of heavy metal(loid)s and micronutrients from fully flooded paddy soils were investigated in a greenhouse study. Rice seedlings 45 days after germination were randomly exposed to an equivalent amount of 100 mg L−1 of zinc oxide nanoparticles (ZnONPs), zinc oxide bulk particles (ZnOBPs), and zinc salts (Zn2+) through foliar exposure. At termination, rice seedlings were divided into roots and shoots and the concerned metal contents in plant tissues were determined with an inductively coupled plasma mass spectrometry (ICP-MS). Our results demonstrated that all Zn agrichemicals displayed a similar effect on plant growth, but ZnONPs led to the greatest root exudate excretion and greatest inhibition in arsenic (As) uptake. Foliar application of ZnONPs resulted in 28% less As in rice shoots while Zn2+ only caused a 15% decrease in As accumulation in the same tissues. ZnOBPs had minimal impact on As concentration in rice shoots. ZnONPs also promoted iron (Fe) and copper (Cu) uptake in rice shoots, both of which are essential micronutrients for humans. The results suggest that foliar application of ZnONPs resulted in more favorable outcomes for plant growth and food safety than other two types of Zn. Overall, our results showed that application of nanoagrichemicals have important food safety and nutrition implications in addition to their agronomical roles and ZnONPs could be potentially used to alleviate As uptake and fortify Zn and other essential micronutrients in rice grains.


2018 ◽  
Vol 3 (4) ◽  
pp. 178-187 ◽  
Author(s):  
Leila Foroutan ◽  
Mahmood Solouki ◽  
Vahid Abdossi ◽  
Barat Ali Fakheri

Introduction: Moringa peregrina (Forssk.) Fiori as a desert tree has economic, nutritional, and medicinal properties, and is constantly encountered with drought stress. In addition, the role of zinc oxide nanoparticles (ZnO-NPs) in regulating the drought stress which induces biochemical processes is uncertain in this plant. Therefore, this study aimed to investigate the biochemical alternations, namely, enzymatic and osmoprotectant which are induced by ZnO-NPs in ten populations of M. peregrina under drought stress. Materials and Methods: Moringa peregrina seeds were collected from southeast of Iran in 2014. The young plants were exposed to drought stress by withholding irrigation (until 50% filed capacity [FC]) 40 days after germination followed by spraying 0 (as control), 0.05, and 0.1% of the ZnO-NPs. Results: The alternations of Na/K ratio, enzymes activities, and osmoprotectant content varied under drought stress depending on the M. peregrina populations. Generally, drought stress significantly enhanced peroxidase (POD) and polyphenol oxidase (PPO) activities, as well as proline content in untreated plants. Further, the Na/K ratio and carbohydrates content significantly decreased under the drought stress. Furthermore, ZnO-NP treatment significantly enhanced POD and PPO activities, as well as proline and carbohydrates content under both well-watered (100% FC) and drought stress conditions (50% FC), and at the concentration of 0.05% rather than 0.1%, ZnO-NPs was more effective. Conclusion: Overall, ZnO-NP treatment could effectively improve the drought tolerance by enhancing the enzymes activities and osmoprotectant content in different M. peregrina populations under drought stress. Therefore, foliar application of ZnO-NPs at 0.05% concentration could be a recommended treatment for growing different M. peregrina populations under drought stress conditions.


Sign in / Sign up

Export Citation Format

Share Document